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Memories about the spatial environment, such as the locations of
foraging patches, are expected to affect how individuals move
around the landscape. However, individuals differ in the ability
to remember spatial locations (spatial cognitive ability) and
evidence is growing that these inter-individual differences
influence a range of fitness proxies. Yet empirical evaluations
directly linking inter-individual variation in spatial cognitive
ability and the development and structure of movement paths
are lacking. We assessed the performance of young pheasants
(Phasianus colchicus) on a spatial cognition task before releasing
them into a novel, rural landscape and tracking their movements.
We quantified changes in the straightness and speed of their
transitory paths over one month. Birds with better performances
on the task initially made slower transitory paths than
poor performers but by the end of the month, there was no
difference in speed. In general, birds increased the straightness
of their path over time, indicating improved efficiency
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independent of speed, but this was not related to performance on the cognitive task. We suggest that
initial slow movements may facilitate more detailed information gathering by better performers and
indicates a potential link between an individual’s spatial cognitive ability and their movement
behaviour.

1. Introduction
Reducing the time and energy spent searching for resources can help animals maximize their foraging
efficiency and reduce their exposure to predators [1], such that even small increases in the efficiency of
movements can accumulate across a lifetime and bring fitness benefits [2]. There are marked
individual differences in patterns of movement behaviour [3], which can be highly repeatable [4,5].
An individual’s spatial cognitive ability, namely, the ability to collect, process, store and use spatial
information has been suggested to influence movement decisions [6–8] and improve movement
efficiency [2]. This ability can be assayed in both laboratory [9–11] and wild populations [12,13] and
performances on tasks assaying spatial abilities have been correlated with proxies of fitness including
better survival [14,15], increased sexual success [16,17] or reproductive investment [18,19]. Indirect
links have been made between the exploration of a novel environment in the laboratory and spatial
cognition at a population level [20]. However, to our knowledge, no studies have yet investigated a
link between spatial cognitive ability and the development of movement behaviour of an individual.
Specifically, a link between spatial cognitive ability and movement between areas of interest such as
foraging patches or refuges may be expected. Previous research shows that the speed and straightness
of transitory paths increases with familiarity of the environment [21,22]. Since turning can be costly
[23], improving the efficiency of transitory paths may yield energetic benefits and we may expect that
differences in spatial cognitive ability could modulate these changes.

Quantifying individual movement in real-world landscapes demands high spatial and temporal
resolution tracking. Individuals should be followed continuously over extended time periods and their
location logged at time intervals relevant to their typical movement speeds and distances travelled
[24,25]. This permits an individual’s path to be described both spatially and temporally. If measures
from the same individual can be collected repeatedly over time, then their improvements in efficiency,
as indicated by a decrease in travelling time, distance or tortuosity of the path between two locations
[26], can be established. Crucially, to measure improvement in movement efficiency, it is essential that
the prior experience of the individual in that environment is known and accounted for, so that a
baseline is established. This means that an individual should be tracked as early as possible from the
first time that they enter a landscape, otherwise older or more experienced individuals may appear to
be more efficient simply because they have more knowledge of that environment. Additionally, it is
desirable to account for the effects that more experienced individuals (e.g. parents) may have on the
development of a focal individual's movement. This could be through leadership or followership as
naïve individuals may accompany others with prior knowledge of the landscape, which could help
them to develop more efficient routes [27,28].

Differences in inter-individual spatial cognitive ability can be assessed under controlled conditions by
adapting well-established methods usedwithin comparative psychology. Tasks that simulate foraging can
entail food being hidden within a set of potential locations [29,30] frequently arranged as a grid [10] or
radial maze structure [31] and performance can be monitored over multiple trials (e.g. [23]). The
pheasant, Phasianus colchicus, provides an established model for measuring individual differences in
cognitive abilities [32], and these differences can have fitness consequences in terms of survival [33].
While evidence from other species suggests that captive and wild populations may differ in other
cognitive traits, such as problem solving [34], by using a captive population and rearing birds from
hatching, we were able to control for age, experience and environment. Pheasant chicks are precocial
and can therefore be reared without parents and under controlled conditions, removing opportunities
for inter-generational learning and variation in early life experiences. The annual en masse release of
pheasants as a managed game bird in the UK provides a rare opportunity to explore how spatial
cognitive ability may relate to movement in a free-roaming terrestrial bird. Coupled with their large size
and relatively sedentary nature, they can easily be tracked in the wild. Because entire cohorts are
released simultaneously and at the same location, all birds are naïve to the environment at the point of
release and have equal opportunity to explore the same area with exposure to the same distribution of
resources and threats. Pheasants therefore provide a useful model to study the influence of cognitive
traits on the development and efficiency of an individual’s movement paths in natural landscapes.
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We assayed the spatial cognitive ability of a cohort of pheasant chicks in early life using a five-arm
radial maze with a single baited arm. Later, we released these birds into the wild with a soft-release
protocol [33,35], and monitored their movements using the reverse-GPS system, ATLAS [36,37]. At our
study site, these birds are limited in access to informed individuals who they could follow, since adults
are caught for breeding and released elsewhere. As individuals become familiar with a landscape, their
trajectories between places of interest are expected to increase both in straightness and speed [21,22].
However, we may expect differences in movement traits between individuals of differing spatial
cognitive abilities, due to a different strategy [8] or capacity for collecting spatial information. First, if
individuals initially explore the environment in similar ways, we may expect birds that perform well in
the spatial task to take less time to learn about their environment, resulting in quicker improvements in
the speed and straightness of transitory paths. However, more accurate decision making relies on
collecting high-quality information which is frequently achieved by increased sampling time, [38–40]
and/or making more tortuous movements when gathering information [41]. We may therefore expect
birds that perform well in the spatial task to make slower and/or more tortuous paths during the initial
stages of exploration. Any differences in early information-gathering strategies may also result in
differences in the long-term, with good learners ultimately moving more efficiently [42]. To investigate
potential differences, we isolated sections of trajectories where birds were in transit between places of
interest, such as foraging patches or resting locations. We then assessed whether performance on a
spatial cognition task, measured early in life, was related to changes in straightness and/or speed of
their transitory paths after release into the wild several weeks later.
1758
2. Methods
2.1. Subjects and housing
We hatched 190 chicks (87 females and 103 males) on 25th May 2017 at North Wyke Rothamsted Research
farm (Devon, UK, 50°770 N, −3°90 W). They were the offspring of adults (16 males and 24 females) that we
had caught in the wild and housed in mixed groups for breeding. These mixed groups meant that there
were likely to be few full siblings, reducing any potential clutch effects on either cognition or movement
behaviour. Actual relatedness between individuals used in this study was calculated from blood
samples for another study [43] (electronic supplementary material, Appendix S1). Once laying was
completed, we released the adult birds at a location 6.9 km away from the study site. Pheasants rarely
disperse more than 3 km from release sites [44], so our chicks would be unlikely to come into contact
with their parents or other experienced individuals once released. While we cannot explicitly say that
there were no adults near the release site, there were likely few, if any, due to our trapping and
relocation regime. The chicks were randomly allocated to one of four indoor enclosures (1 m × 2 m) with
replicated environments (perches, drinkers and food bowls) in approximately equal-sized groups (2 ×
47, 2 × 48). Chicks were given ad libitum access to age-specific commercial chick crumb (Sportsman
Game Feed, London, UK) and water. At two weeks old, birds were individually labelled with
numbered patagial wing tags (Roxan Ltd, Selkirk, UK).

2.2. Assessment of spatial cognitive ability
From one day old, the chicks were trained to associate food with human presence. From five days old,
chicks were shaped to enter a testing chamber (75 cm × 75 cm) from their enclosure through a sliding
door, first in groups and later individually, to eat mealworms scattered throughout the chamber. Chicks
exited the chamber into a ‘post-testing’ area (0.75 m × 1.25 m) through a pulley-assisted door and were
released back into the enclosure once all birds had entered the ‘post-testing’ area. After two weeks, all
chicks would voluntarily enter and exit the testing chamber alone. For the next five weeks, all birds
were subjected to an identical series of cogntive tasks unrelated to the current study. Since all prior
tasks were the same in design and number of trials, it is unlikely that prior experience influenced
performance on the spatial task used for this study.

Maze tasks have previously been shown to be linked to spatial behaviour in the wild [45]. At seven
weeks old, we tested the spatial cognitive ability of the pheasant chicks using a radial maze style task
(figure 1) in which they had to learn and remember the location of a reward, indicative of their ability
to learn about spatial routes and/or landmarks and rely on memory when deciding where to move
[31,46]. The birds voluntarily entered the testing chamber alone and were lured to a central platform



exit

entrance

R

Figure 1. Schematic of the spatial task. Birds walk through the entrance and onto the central platform before beginning the task. R
denotes the location of the reward (three mealworms).
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(20 cm diameter) by a dead mealworm presented in the middle of the platform. Five walls radiated from
the central platform, separating the testing chamber into five compartments. At the end of four of thewalls
(excluding the compartment through which the birds entered the testing chamber), there was a second
short wall perpendicular to the main compartment wall that obscured the view of a circular tray. In one
of these trays (the location of which was consistent for all birds (figure 1)), we placed a reward of three
mealworms, while the remaining trays were empty. Birds were required to walk to the end of a
compartment and look around the perpendicular wall to retrieve the reward. Stepping off the central
platform into an incorrect compartment (including the entrance arm) was counted as an error. Birds
could not move from one compartment to another without returning to the central platform. In each
trial, we counted the number of errors a bird made until it retrieved the reward, after which the bird
was immediately released from the testing chamber. Birds were also released from the testing chamber,
and their trial abandoned, if they appeared stressed (e.g. through lost-calling or flapping). Each bird
had the opportunity to complete 12 trials between 3rd and 7th July 2017 and 168 birds completed all 12
trials and could therefore be used in further analyses. The order in which individuals entered the
testing chamber was recorded in each trial. Test order has been previously found to be repeatable in
pheasants and is thought to indicate motivational traits [47]. We calculated a median test order of a bird
over all 12 sessions. Birds with lower median test order could be considered more motivated by food
rewards as they were consistently early to enter the testing chamber.
2.3. Release
The pheasants were sexed (by plumage) andweighed (Slater Super Samson spring balance – precision 5 g)
when 10 weeks old on the 26th July 2017. We fitted birds with tracking tags attached with a backpack
harness that comprised elastic wing-straps threaded through heat-shrink tubing. Tags weighed 22 g,
which was a mean of 2.63% of released body mass (range = 2.00–3.67%), although birds were expected
to continue to grow meaning that after a couple of months, tags were expected to weigh between 1.1%
and 2.3% of adult body mass [48]. We released the pheasants into a 4000 m2 enclosure (hereafter the
release pen) within a small woodland on North Wyke farm. The release pen was surrounded by a 2 m
high wire fence and an exterior 30 cm high electric fence to protect the pheasants from terrestrial
predators such as red foxes, Vulpes vulpes, while the birds acclimatized to the wild. The release pen
contained patches of vegetation providing roosting and shelter sites, as well as ad libitum access to water
and food from feeders and drinkers. Birds typically remained within the pen for approximately four
weeks, but they could voluntarily leave the release pen by flying out and could return either by flying
in or walking through one-way holes. Until 30th August, we actively guided birds back into the release
pen at dawn and dusk if they had flown over the fence while descending from overnight roost sites or
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while moving around the pen during the day. This is a well-established protocol for game-keeping and
allows the birds time to acclimate to living in the ‘wild’, and keeps them safer from terrestrial predators
after being released from captivity. This meant that movement outside the release pen was limited until
1st September. From the start of September, birds began to increasingly disperse into the surrounding
landscape which consisted of a mix of grassland and woodland and contained 39 more barrel-feeders.
There was no game shooting or predator control on the field site during the study.

2.4. Monitoring movement
We used a recently developed reverse-GPS system (ATLAS) [36,37] to track the movement of the
pheasants. Briefly, this system comprised four time-synchronized, fixed-location receiver stations that
surrounded the release site (0.5–4 km away) that recorded the time of arrival of individually
identifiable radio signals from tags. The tags on our pheasants emitted a signal once every 4 s. The
time of the arrival of signals at each of the receiver stations was used to compute localizations. We
then filtered the raw location data (electronic supplementary material, Appendix S2) and computed
median locations for each 5 min period. Since pheasants move relatively slowly (less than 0.5 m/s,
unpublished data), we felt this was an acceptable reduction in temporal resolution to improve overall
accuracy. ATLAS has been reported to have a median accuracy of 5–10 m [36].

Because we were interested in how movements developed, we needed to assess how much of the
environment the birds had explored before we stopped actively trying to keep them in the release pen
(1st September). However, due to the novelty of the system, we experienced unexpected technical
difficulties which meant that our system only started recording locations of tagged birds from 17 August
2017, 22 days post-release. In addition, due to an electronics fault, we had intermittent tag transmission
failures throughout the season leading to patchy location data for some dates and individuals and total
loss of data for others (electronic supplementary material, Appendix S3). We therefore cannot determine
exactly when each bird left the release pen for the first time; however, at a population level, there were
very few birds that were tracked away from the release pen between 22nd August and 1st September
(electronic supplementary material, Appendix S4). The mean home range size (95%-Kernel density
estimate (KDE)) of the pheasants increased over September (1–15 September: mean ± s.d. = 3.97 Ha ±
3.12; 16–30 September: mean ± s.d. = 10.69 Ha ± 12.48), yet the core range (50%- KDE) at the end of the
month of still overlapped heavily (mean ± s.d. = 0.54 ± 0.18) with the core range from the beginning of
the month (figure 2). Home ranges and overlap were calculated using the adehabitatHR R package (v.
0.4.18, [49]). This demonstrates that while the birds are beginning to explore the area, they were not
dispersing to completely different areas or moving in a nomadic way. Thus, birds can use their previous
experience of an area to inform their movements. We therefore conclude that, although we do not know
if a particular individual has been outside the release pen before, we are confident that all birds are at an
early stage of exploring the environment outside the pen. We also confirmed (through finding corpses)
39 deaths from predation during the first two months post-release. To ensure that movements were
comparable between individuals, we restricted our analysis to movement data collected from live birds
with functioning tags in September (electronic supplementary material, Appendix S5). By assessing
movement only in September, we obtained a reasonable overview of how the birds develop their
movement strategies in an environment with which they are relatively, if not completely, unfamiliar. We
only included birds in the analysis that had completed all 12 trials in the spatial task and for which we
had obtained daytime localizations for at least 6 h/day for a minimum of seven days in September. This
allowed us to consider 50 individuals for subsequent analysis (25 females, 25 males) (total 114 067
locations, mean ± s.d. per individual = 2281.34 ± 774.03).

2.5. Behavioural classification
Movement behaviours can be indicative of movement goals [7,50] and movement states such as transit,
foraging or resting can be inferred by identifying discrete patterns in turning angles and step lengths (the
distance between location estimates). A hidden Markov model (HMM) is a time-series model that is a
commonly used and flexible tool for this type of analysis which enables the sequence of state changes to
be estimated via the Viterbi algorithm [21,51,52]. We used a HMM from the R package moveHMM v. 1.6
[53] on ATLAS data to identify three different movement states, allowing us to analyse transitory paths
independently of other types of behaviour. Pheasants are diurnal, therefore we only used paths from
between civil dawn and civil dusk (calculated using the crepuscule function from the maptools package
v. 0.9-5 [54]). We split paths with more than a 1 h window of missing points for each individual. This was
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Figure 2. Example of how individual home ranges change over the study period. Initially, birds’ core home ranges (50% KDE: solid
blue (beginning of September)) are very close to the release pen (yellow) and the total home range (95% KDE: transparent colours)
is small, although this varies between individuals. At the end of the month, the core home range (slightly transparent purple) still
overlaps heavily with the range from the start of the month (demonstrating that they can use their experience to inform their
movements) but the total home range (transparent purple) is larger. This indicates that the birds had not formed their final
home ranges before the study began, when we were unable to track the birds.
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to avoid using interpolation to simulate locations in the missing period which, since pheasants often move
slowly, can lead to misclassification of paths as a result of many short steps in a straight line being created.
We ran 25 randomizations of the initial parameters for a three-state model to assess model sensitivity and
ensure that the model had identified the maximum log-likelihood estimates of the parameters [55]. Initial
parameters are described in electronic supplementary material, Appendix S6. Fifteen of the 25 models
converged on similar log-likelihood values (within 0.03), indicating numerical stability and good initial
parameters. Since some steps were of length zero, we also estimated zero-inflation within the model [53].
We used a Gamma distribution to describe step length and a von Mises distribution for turning angles.
The model with the largest maximum log-likelihood separated behaviours primarily by step length (see
electronic supplementary material, Appendix S7).

Visual inspection of the HMM-categorized movements enabled us to match the states to their likely
behaviours (figure 3). State 1, which we deemed to be resting behaviour, was rare during the day and
characterized by essentially no movement (Step length (mean ± s.d.) = 3.504 m± 2.595 s.d., number of
steps = 9961; displacement distance: 7.987 m± 6.021 s.d.; number of paths = 818). State 2 involved much
longer mean step length and displacement distance (Step length (mean ± s.d.) = 33.160 m± 29.151 s.d.,
number of steps = 19 674; displacement distance: 93.931 m± 77.410 s.d.; number of paths = 970) and we
deemed this to be transit. State 3 was characterized by an intermediate step length and displacement
distance (Step length (mean ± s.d.): 14.240 ± 10.033, number of steps = 84 432; displacement distance:
50.776 m± 38.540; number of paths = 1834) and frequently occurred in the vicinity of feeding stations, so
we called this foraging behaviour. All turning angles were centred around π, which indicates a high
frequency of course reversals, although to a lesser degree in transit behaviour. We expect that this is due
to slow movement speeds coupled with some error which may cause the paths to look as if a bird is
moving backwards and forwards when in reality it has moved only slightly or is still. It could also be
indicative of pheasants moving around obstacles. We used the Viterbi algorithm (viterbi function in
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moveHMM) to estimate the most likely sequence of state changes for each trajectory based on the best-fitted
model and isolated the sections of the trajectories that were determined to be ‘transit’.

2.6. Assessing search efficiency
We only considered movement during transit (State 2) to be indicative of demands on efficiency. The
mean displacement distance during a transit bout (absolute distance moved during that movement
bout) was about double the displacement distance covered during a foraging bout (State 3) and
usually occurred between foraging bouts, indicating that the focal bird was moving in unprofitable
land between profitable foraging patches. It is this movement between foraging sites that could be
made more efficient with experience. We consider more efficient paths to be straighter and/or
faster to travel. Paths may be straight and/or quick simply because an individual has learned the
shortest route to their goal. Alternatively, the time that an individual takes to move between two
distant points may be determined by their ability to select terrain that is easier to traverse, for
instance flat ground or roads. Considering both straightness (straight line distance=path length)
and speed (m/s) therefore provides us with two metrics of movement efficiency through both turn
frequency and the relative ease of the terrain. We isolated each section of all paths that were
designated as transit (State 2) and assessed both straightness and speed using the amt package
[56]. Using this approach, we can objectively identify differences in the characteristics of transitory
paths over time, without the need to pre-determine the goal locations e.g. feeders. This is
important because the birds may be travelling to other types of foraging sites e.g. leaf litter to
forage for arthropods, or to refuges. The straightness function was used to calculate straightness
and we calculated speed by measuring the total distance travelled (tot_dist function) divided by
duration in seconds. We were concerned that paths that were very long in duration may have been
misclassified. The mean (±s.d.) duration of transitory movements was 1.7 h (±1.93) but the
maximum value was 13.5 h which we do not feel is likely from a biological standpoint. We
therefore removed transitory paths that were over 6 h in duration (95th percentile = 5.68 h, n = 45).
In total, we analysed the 925 transitory paths (mean number of steps in path = 16.14 [range = 3–69])
that were shorter than 6 h in duration that were made by birds that completed all trials for the
cognition task.
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2.7. Statistical analyses
A criterion based approach to assessing memory (e.g. trial number at which 10 consecutive correct
response trials are completed [57]) is a popular and effective measure, but requires the completion of
many trials, sometimes hundreds. Due to logistical and temporal constraints associated with assaying
high numbers of young pheasants, we used a ‘reverse criterion’ approach, considering the maximum
number of consecutive trials completed with no errors as a measure of accuracy, with birds with
higher scores being assumed to have the better spatial cognitive ability. This measure represents the
stage of learning the bird had achieved at trial 12, with birds which had not learned the task well
only completing very few no-error trials consecutively, perhaps by chance. Alternatively, birds
successfully completing a high number of consecutive trials are unlikely to have achieved this by
chance ( p = 0.2 per trial). We used a Chi-squared test to assess whether the distribution of observed
scores was different from that expected by chance. P-values were calculated using Monte Carlo
simulations (n = 2000) since some of the expected frequencies were low.

To identify whether any cognitive or non-cognitive traits influenced the speed or straightness of
transit paths, we conducted two GLMMs. Any continuous variables were centred and scaled using
the scale function. We compared different error structures by plotting the residual and fitted
heteroscedasticity of different models and found that a Gamma error structure with a log link
function provided the best fit for the data for both models. We included a two-way interaction
between date (as a scaled integer) and performance on the spatial task to identify changes over time
attributed to spatial cognitive ability. We hypothesized that food-motivation may play a role in
movement between patches where individuals exhibit clearer goal-directed behaviour, perhaps faster
or more direct routes. We therefore included scaled test order, as well as sex as fixed effects in the full
model. In the straightness model, we also included the number of locations within the path (scaled) as
a fixed effect. This was not included in the speed model as this is already part of the speed
calculation (since number of locations is colinear with time). Bird identity was included as a random
effect in both models. We reduced the model using stepwise model simplification: optimal models
were selected based on AIC values and residual variance, calculated from likelihood ratio tests (base
R function: drop1, test = Chi). All analyses were performed in R (v. 3.5.3) [58] using the R Studio
wrapper (v. 1.2.1335) [59].

2.8. Ethical considerations
Handling of all pheasants during rearing and testing was kept to a minimum. Task participation was
voluntary and only positive reinforcement was used. Birds were habituated to experimenters and the
testing chamber from their first day of life to help alleviate the stress that testing procedures may
cause. Chicks were kept in less densely populated conditions than is recommended by DEFRA’s code
of practice [60]. When capturing wild adults for breeding, traps were checked at least three times per
day. All work was conducted under Home Office license PPL 30/3204 and approved by the
University of Exeter Animal Welfare Ethical Review Board.
3. Results
3.1. Did birds learn the spatial task?
The 50 birds used in the movement analysis varied in performance score (maximum number of
consecutive no error trials) from a minimum of 0 to a maximum score of 9 (figure 4) (distribution of
all 168 birds’ scores can be seen in electronic supplementary material, Appendix S8). The distribution
of observed scores was different to that expected by chance (χ2 = 14213, n Monte Carlo simulations =
2000, p < 0.001; figure 4).

3.2. Association of spatial cognitive ability on movement behaviour
Individuals that had better performance scores in the spatial task improved the speed of their transitory
paths more rapidly over the month than poor learners, indicated by a significant interaction between date
and accuracy score (table 1). However, better performers also started with slower paths and eventually
improved over time to attain the same level as worse performers (figure 5a). Performance on the
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Table 1. Model outputs from generalized linear mixed model of the effects of performance in the spatial task on the speed and
straightness of transitory paths. P values and likelihood ratio test values are given when they were removed from the full model,
denoted by superscript.

parameter β ± SE LRT p

speed

sex (M)1 −0.050 ± 0.074 0.482 0.488

test Order2 0.051 ± 0.035 2.059 0.151

date� 0.045 ± 0.050 — —

performance� −0.014 ± 0.019 — —

date × performance� 0.034 ± 0.016 4.460 0.034

straightness

test order1 −0.002 ± 0.039 0.05 0.966

sex2 −0.017 ± 0.078 0.05 0.824

date × performance3 0.004 ± 0.013 0.08 0.781

performance4 0.004 ± 0.021 0.05 0.825

date� 0.102 ± 0.024 17.31 <0.001

number of locations in path� −0.514 ± 0.022 372.09 <0.001
�denotes the terms are present in the reduced model.
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spatial cognition task was not related to the straightness of transitory paths but overall, birds increased
the straightness of their paths over time (figure 5b). We found no differences in overall movement
efficiency based on an individual’s sex or motivation (table 1).
4. Discussion
Pheasant chicks improved their performance in a five-arm radial maze task, indicative of their ability to
acquire spatial information and use spatial memory but individuals varied in their task performance. We
then released these birds into a novel real-world environment and tracked their movements to investigate
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whether they became more efficient in their transitory paths as they gained experience of the
environment. Due to technical difficulties we were unable to track birds from their initial entry into
the novel environment. However, at this point, few birds were roaming outside the release pen and
the majority of birds remained close to the release pen until mid-September, indicating that they only
began exploring the wider environment in September. We found that individuals that were better
performers in our test of spatial cognitive ability early in life initially made slower transitory paths
than worse performers at the beginning of the study period. However, over a period of one month,
these better performers improved their transitory path speeds more rapidly, to reach speeds similar to
those of worse performers. All birds, regardless of performance on the cognitive task, increased the
straightness of their transitory paths throughout the period, suggesting that they were learning about
the environment and optimal routes between foraging sites. This study provides the first empirical
insight into how inherent individual differences in spatial cognitive ability might be linked to the
development of transitory paths in free-roaming animals.

Individuals that performed well in the spatial task moved more slowly than poor performers at the
beginning of the study period. Individuals that performed poorly on the task exhibited a fairly consistent
speed and the better performers increased their speed to match the speed of poorer performers by the
end of the study. Indeed, their slopes of improvement suggest (figure 5a) that better performers may
have eventually moved faster than poor performers. These differences could not be explained by
differential opportunities to learn because all birds were initially naïve to the environment and, being
released on the same day at the same site, had equal experience of it. It is also unlikely to be
explained by differential access to informed individuals as we had removed all parents from the study
site and did not detect them on the site again during our tracking period. Although there is the
possibility of our test birds following wild, experienced non-parent adults that we did not capture or
detect, all released birds had equal access to them. With this being said, since we were unable to track
the birds for the first month of release, it is possible that a few birds became more experienced than
others and that these individuals could be followed. However, if this was the case then we would
expect birds to move at similar speeds, independent of their score on the cognitive task. Since we find
differences in speed are associated with spatial cognitive ability, the birds are likely to be following
individuals of similar spatial ability or are moving independently of other birds. In random search
processes, speed, turning patterns and perception govern the success of encounters with resources
[26]. Slower movements by better-performing birds during the early occupation of a novel landscape
may facilitate the gathering of more information at this early period and could indicate that a speed-
accuracy trade-off is involved in early exploration in novel environments [38]. Since better performers
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did not use faster or straighter paths than poor performers by the end of our study period, we were
unable to detect a clear advantage in movement efficiency as a consequence of these early differences.

In accordance with other studies [21,22], we found that pheasants in general increase the straightness
of their transitory paths as they gain experience of an environment. However, in contrast with our
predictions and our results considering path speed, we found no difference between individuals of
differing spatial cognitive ability in the straightness of their transitory paths. The lack of relationship
between spatial cognitive ability and straightness of transitory paths could have several explanations.
First, in species where transit can occur via direct routes with few obstacles, straightness is an obvious
and informative measure of efficiency since turning is costly [23]. In the case of a terrestrial bird in a
rural landscape, the presence of obstacles and varying terrain may mean that the most ‘efficient’ path
is not necessarily the straightest, with costs of movement or risk being higher for some apparently
direct paths. This measure becomes further complicated when we consider multiple start and end
points of transitory paths both between and within individuals over different days. For example, birds
may be moving towards any of the 39 feeders at our site, and the most efficient route in open, flat
grassland may be markedly different in straightness to that in woodland. Such a measure becomes
further complicated when we consider not just energetic costs, but also those of exposure to risk, with
the safest routes between two points including a detour to avoid a risky site. Predator risk and social
factors are also likely to be highly fluctuating and unpredictable and could also influence the end
point of a transitory path [61–63] and social factors in particular may influence how an individual
moves if part of a group [64,65]. Furthermore, foraging strategy or diet preferences may differ
between individuals, leading to differences in movement strategies [4,66]. Therefore, although all
pheasants showed an increase in path straightness over the study period, indicating improved route
choice with experience, it is perhaps not surprising that we did not find individual differences that
related to spatial cognitive ability; especially given the likely high level of noise in the measures of
straightness across routes and the conditions under which those routes are travelled.

Our findings appeared to be robust to differences in sex and motivation as we found no effects of
these factors on performance on the spatial task, movement speed or straightness in our study.
Previous research has found distinct sex differences in spatial cognitive ability linked to larger home
ranges [67], more complex habitats [68] or differential breeding biology [69] for one particular sex,
although see [70]. Pheasants display pronounced sex differences in movement and space use,
exhibiting sexual segregation between November and February [35] and with females typically
dispersing further than males [71]. It is therefore surprising that we did not find differences between
the sexes in spatial cognitive ability and/or movement efficiency. However, failure to detect a sex
difference may be due to our short study period focussed early in the bird’s life and annual cycle, i.e.
before males have established territories and before females began to search for mates.

The proposed relationship between spatial cognition and movement in the real world, presumed to
be key to efficient space use [2,7], has lacked empirical support. We have used the widely accepted
method of measuring performances on abstract cognitive tasks to provide a useful assay of inter-
individual variation in cognitive abilities [72,73] and we have linked this to changes in movement
behaviour, specifically changes in speed, in natural, real-world landscapes. This is reassuring in that it
links performance in controlled tests to a natural behaviour that is assumed to involve the cognitive
process being tested. Such links between tasks and natural behaviours are rare (but see [18,74]). While
it may be appealing to simply think that ‘better’ spatial memory, as assayed by our task, should bring
intuitive fitness benefits in terms of more efficient travel between desired locations (perhaps through
better survival or reduced energy expenditure), we were unable to find evidence for the quicker or
straighter movements that we expected from birds with ‘good’ spatial memory. Instead, we found
that better performers made slower movements in the early exploration of an environment. However,
any long-term benefits arising from these early differences in movement strategies remain to be explored.
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