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Summary

� Ocean currents play a significant role in driving the long-distance dispersal (LDD), spatial

distribution and phylogeographic patterns of many organisms. Integrating phylogeographic

analyses and mechanistic ocean current modelling can provide novel insights into the evolu-

tionary history of terrestrial littoral species but has been rarely applied in this context.
� We focused on a group of Cycas that have buoyant seeds and occupy coastal habitats. By

integrating evidence from mechanistic simulations and whole plastomic data, we examined

the role of ocean circulation in shaping the phylogeography of these Cycas species.
� Plastomes of the studied Cycas species showed extreme conservatism, following a post-

Pleistocene divergence. Phylogenies revealed three subclades, corresponding to the Pacific

Ocean, Sunda Shelf and Indian Ocean. The ocean modelling results indicate that hotspots of

seed stranding coincide well with the contemporary distribution of the Cycas species and that

drifting trajectories from the three subclades are largely confined to separate regions.
� These findings suggest that ocean current systems, by driving long-distance dispersal, have

shaped the distribution and phylogeography for Cycas with buoyant seeds. This study high-

lights how the combination of genomic data and ocean drift modelling can help explain phy-

logeographic patterns and diversity in terrestrial littoral ecosystems.

Introduction

Ocean currents, driven by global wind systems, play a key role in
mediating long-distance dispersal (LDD) and maintaining con-
nectivity in many terrestrial organisms (Renner, 2004; Ali &
Huber, 2010). Transoceanic LDD enables colonization of unoc-
cupied habitats and large-scale exchange of individuals between
remote populations (Nathan et al., 2008), and thereby is consid-
ered a key driver of the genetic and spatial structure of popula-
tions and communities across multiple scales (Levin et al., 2003;
Excoffier et al., 2009; Gillespie et al., 2012; Kremer et al., 2012;
Nathan, 2013; Gallaher et al., 2017). Based on the classic
isolation-by-distance (IBD) model, higher levels of long- vs.
short-distance gene flow act to reduce or increase local genetic
correlation, respectively (Wright, 1969), offering a framework
for analyzing how phylogeographic patterns develop at different
scales.

Recent studies that integrated phylogeographic inference,
numerical ocean circulation models, and Lagrangian simulation
of individual particle trajectories (van Sebille et al., 2018) have

greatly improved our knowledge of the ecological factors driving
evolution in the oceans. These include studies of genetic structure
(Bertola et al., 2020; Sefc et al., 2020), connectivity and establish-
ment (Jensen et al., 2020; Nikolic et al., 2020) of marine organ-
isms. For terrestrial plants, mechanistic dispersal simulations also
have been used to predict propagule transoceanic dispersal of
mangroves (Van der Stocken et al., 2019), seagrasses (Smith et al.,
2018) and Urticaceae (Wu et al., 2018), and to confirm the
origin of pre-Columbian bottle gourds (Kistler et al., 2014). This
mode of transport is particularly relevant for littoral plants that
tend to be widely distributed and often are equipped with buoy-
ant seeds, fruits, or vegetative propagules. Although the role of
transoceanic LDD as the driving mechanism for shaping phylo-
geography of these taxa is well-recognized (Miryeganeh et al.,
2014; Gallaher et al., 2017; Guo et al., 2018; Banerjee et al.,
2020; Wee et al., 2020), only a few previous studies (e.g. Wee
et al., 2014) have integrated comprehensive phylogenetic and
ocean-circulation modelling into explanations of the evolutionary
history of littoral plants. Therefore, mechanistic assessment of
the genetic consequences of LDD by ocean currents (e.g.
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metacommunity-scale phylogeographic pattern) in terrestrial lit-
toral ecosystems is still rather limited.

Cycads are the most ancient living seed plant lineage (Brenner
et al., 2003), considered to be living fossils that have undergone
recent radiation (Nagalingum et al., 2011). Extant cycads include
approximately 364 species, and the genus Cycas (Cycadaceae) is
the most diversified group within cycads, containing 120 species
(Calonje et al., 2021). Cycads occur in various ecosystems,
including wet (rainforest, littoral plants), arid and semi-arid con-
ditions (xerophytes). Most cycad species are distributed inland,
often having heavy seeds that sink in water, implying limited
water-dispersal ability. However, 10 Cycas species possess buoy-
ant seeds (hereafter referred to as buoyant Cycas) and are classified
as section Cycas subsection Rumphiae, which is characterized
anatomically by the presence of a distinct spongy layer in the seed
(Hill, 1994). Facilitated by this structure, viable seeds of the
buoyant Cycas float vertically with the hilum always oriented
upwards (Fig. 1, inset). Some species such as C. seemanii also have
developed an alate flattened extension at the micropyle end,
which serves as a keel and balances the seed perfectly in the water,
thus creating a stable environment for embryo development
(Lindstrom, pers. obs.).

Buoyant Cycas represents a complex of closely related widely
distributed taxa, ranging from Indochina and Malesia (an area

that includes the Malay Peninsula, Indonesia, New Guinea and
the Philippines), north to coastal South Indochina, south to New
Guinea, west to East Africa, and as far east as Fiji and Tonga
(Figs 1, S1). Previous studies involving this group used allozyme
(Keppel et al., 2008) and multilocus (Liu et al., 2018) data to
reveal high genetic similarity within this subsection, which
echoed an earlier casted hypothesis that the distribution of buoy-
ant Cycas resulted from LDD by ocean currents (Dehgan &
Yuen, 1983; Hill, 1996). Given its distinct propagules and exten-
sive ranges, buoyant Cycas are highly suitable to test the hypothe-
sis that phylogeographic pattern follows ocean currents among
regions. However, quantitative evidence based on the integration
of phylogeographic analyses and mechanistic oceanic transport is
still lacking.

In order to better understand the role of ocean currents in
maintaining connectivity and shaping the phylogeographic pat-
tern of terrestrial littoral plants, we focused on the buoyant Cycas
group and addressed three major questions: (1) Is the phylogeo-
graphic pattern of buoyant Cycas congruent with predictions
from ocean current modelling? (2) Can ocean current simulations
predict the contemporary distribution of buoyant Cycas? and (3)
Did LDD and past climate oscillations leave a genetic signature
on plastomes, as Cycas plastids are maternally inherited (Zhong
et al., 2011) and likely infer seed-mediated gene flow? To address

Fig. 1 The phylogeographic pattern of buoyant Cycas. Purple dots represent inland Cycas that are unable to float on water (refer to clade I in Fig. 2). Blue,
dark green, light green dots denote the distribution of lineages from three subclades II, III, IV, respectively, as revealed by phylogenetic reconstruction of
buoyant Cycas (Fig. 2). Note that the C. seemanii from New Caledonia (Voucher 19450) is not shown because the source specimen probably is of mixed
origin. The shaded area indicates the approximate distribution range of buoyant Cycas lineages. The inset bar plot represents the nucleotide diversity (p)
level of three clades (II–IV) of buoyant Cycas. Insets at the top left show the coastal habitat of buoyant Cycas, and the buoyancy and vertical section of its
seed. The spongy layer is indicated by an arrow in the inset. The major ocean currents in the map are modified from Gordon & Cenedese (2018). NE, North
Equatorial Current; EC, Equatorial Countercurrent; SE, South Equatorial Current; NP, North Pacific Current; K, Kuroshio Current.
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these questions, we first sequenced plastomes and evaluated dif-
ferentiation at the genomic scale of all extant buoyant Cycas.
Then we investigated the phylogeographic pattern and evolution-
ary history of buoyant Cycas and used ocean drift modelling to
evaluate the effect of ocean currents in mediating the contempo-
rary distribution and divergence of buoyant Cycas. Last, we used
plastomic data to estimate the genetic diversity and selective pres-
sure among different phylogeographical lineages.

Materials and Methods

Sampling

Taxonomy follows the accepted names of the World Cycad List
(Calonje et al., 2021) and sampling included all species in the sec-
tion Cycas subsection Rumphiae (Hill, 1994). A total of 45 acces-
sions from different localities, representing 10 species and the
entire range of buoyant Cycas, were sampled (Table S1). Notably,
there are a couple of Cycas species (Table S2) that possess spongy
tissue that is not extensive enough to make the seed float on
water. These species may represent transitional lineages or the
result of hybridization with spongy layer-deficient subsection
Rumphiae (Lindstrom et al., 2009); thus we did not include these
taxa in the sampling. We added 17 published plastomes, includ-
ing six nonbuoyant Cycas representing three Cycas sections
(Panzhihuaensis, Asiorientales and Stangerioides), the other nine
genera (Zamiaceae) from Cycadales, and two Ginkgo accessions
into our sampling.

DNA extraction, plastome sequencing, assembly and
annotation

Total genomic DNA was extracted from silica gel-dried materials
by the modified CTAB method (Doyle, 1991). A total of 2G of
sequencing data from the Illumina Hiseq Platform (Novogene,
Beijing, China) were filtered and used for plastome assembly in
the get_organelle pipeline (Jin et al., 2020) by using Cycas szechua-
nensis (NC042668) as reference. The resulting contigs were visu-
alized, trimmed and edited further in BANDAGE v.0.7.1 (Wick
et al., 2015) to obtain the quadrantal structure contigs. We
applied both the GeSeq (Tillich et al., 2017) and the PGA pipeli-
nes (Qu et al., 2019) to annotate the plastid genomes using
C. szechuanensis as reference. The annotations were compared,
double-checked and adjusted in GENEIOUS PRIME v.2020 (Kearse
et al., 2012). The plastome graph was visualized in OGDraw
(Greiner et al., 2019).

Plastome structural variation analyses

In order to identify regions with substantial variability within
buoyant Cycas species, we chose one accession from each of the
10 buoyant Cycas species based on the phylogenetic results. We
first compared the global alignment of the complete chloroplast
genomes using mVISTA (Frazer et al., 2004), with C. szechuanensis
(NC042668) as a reference. We also used the IRSCOPE script
(Amiryousefi et al., 2018) in R v.3.6.3 (R Core Team, 2020) to

generate and compare the variation of inverted-repeat (IR) and
single-copy (SC) borders of the 10 surveyed buoyant Cycas
species.

Phylogenetic analyses

Phylogenetic reconstructions were implemented in IQTREE

v.2.1.1 (Minh et al., 2020) to infer the maximum-likelihood
(ML) tree using the ultrafast bootstrap approximation method
(Hoang et al., 2018) with 1000 replicates. The TIM+F+R2
model was determined to be the best substitution model in
MODELFINDER (Kalyaanamoorthy et al., 2017) under the default
Bayesian information criterion (BIC). To validate the result of
IQTREE, we also performed a rapid bootstrap analysis in RAXML
v.8.2.12 with 1000 bootstraps under the GTRGAMMA substitution
model (Stamatakis, 2014). For both phylogenetic inferences, we
ran the analyses based on two datasets: protein-coding regions
and the whole plastomic dataset.

Divergence time estimation

Age estimation was implemented in the BEAST package v.2.6.1
(Bouckaert et al., 2019) based on the protein-coding region
dataset. We employed two fossil calibrations from a comprehen-
sive dating analysis of all cycads based on six fossils (Condamine
et al., 2015). We did not incorporate all six fossils because our
study focused only on Cycas and not all cycads. Two of these fos-
sils, Crossozamia chinensis (Gao & Thomas, 1989) and Antarcticy-
cas schopfii (Hermsen et al., 2006), are the oldest known
Cycadophyta fossils and the closest relatives to extant cycads
based on phylogenetic studies (Mart�ınez et al., 2012). We applied
these two fossils to the stem and crown nodes of Cycadales using
uniform prior distributions, following Condamine et al. (2015).
For the stem node, we used a range of 265.1–364.7 Ma (Myr
ago), in which 265.1Ma is the minimum age of Shihhotse For-
mation, Lower Permian where Crossozamia was found, and
364.7Ma is the upper boundary of VCo (versabilis-cornuta)
spore Biozone Formation where the first known record of seed in
the form of preovule (Elkinsia polymorpha) was discovered (Roth-
well et al., 1989), and was used to constrain the origin of gym-
nosperms. For the crown node, we used a range of 235.0–
364.7Ma, in which 235.0Ma is the conservative age of the early
Middle Triassic and is the age ascribed to the Fremouw Forma-
tion where A. schopfii occurs (Gradstein et al., 2012), and
364.7Ma is again the upper boundary of the origin of gym-
nosperms.

The recommended substitution model in BEAST analyses was
determined by PARTITIONFINDER2 (Lanfear et al., 2017), yielding
GTR +G + I. We chose the uncorrelated lognormal relaxed-
clock model as the clock model because it was favored by the
prior nested sampling (NS) model selection test in BEAST. The
choice of the branching process prior can have a drastic influence
on the ages of clades, especially for lineages with a history of high
extinction, so we adopted a birth–death prior here, as employed
and recommended by previous analyses of cycads (Nagalingum
et al., 2011; Condamine et al., 2015). Twenty independent
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searches were run for 100 million generations each and the log
files were subsequently combined by LOGCOMBINER v.2.6.1
(Bouckaert et al., 2019) in BEAST to reach an effective sample size
(ESS > 200). The log output files were evaluated in TRACER v.1.7
(Rambaut et al., 2018). In total, two billion iterations were run
in BEAST, and it generated 40 000 trees by sampling the log and
tree every 50 000 generations. The first 25% of trees (10 000
trees) were discarded as a burn-in before generating maximum
clade credibility (MCC) consensus species tree in TREEANNOTA-

TOR (Bouckaert et al., 2019). The consensus MCC tree with esti-
mated ages was visualized in FIGTREE v.1.4.4 (Rambaut et al.,
2018).

Estimation of substitution rates and nucleotide diversity

Genes in the plastome encode proteins and several types of RNA
molecules, which impact plant metabolism and can consequently
undergo selective pressures. To estimate the signatures of selective
pressure among different groups, we concatenated the protein-
coding genes shared by Cycadaceae, Zamiaceae and Ginkgoaceae
to generate a dataset with 57 456 characters after deleting gaps.
We then estimated the synonymous (ds) and nonsynonymous
(dn) substitution rates of the examined taxa using the codeml
program of PAML v.4.8 (Yang, 2007) by using Zamia furfuracea
as a reference. The pairwise dn and ds substitution rates between
different taxa were calculated based on the custom selection
model by setting the CodonFreq prior as codon table. The dn/ds
value (ratio of nonsynonymous to synonymous substitution rates)
then was calculated for each accession and further compared
between pairwise groups. We also used a Student’s t-test to detect
if there were significant differences in dn/ds rates between differ-
ent groups (i.e. all buoyant Cycas with nonbuoyant Cycas, and
between three buoyant subclades). To compare the genetic diver-
sity level of buoyant Cycas from different regions, we used DNASP
v.5 (Librado & Rozas, 2009) to calculate the Nei’s nucleotide
diversity (p) of the buoyant subclades revealed by phylogenetic
reconstruction that is based on the complete plastomic align-
ment.

Mantel test between geographical and genetic distance

In order to test the association between physical factors (i.e. geo-
graphical distance) and phylogeographic pattern, termed the
isolation-by-distance (IBD) effect, in the process of transoceanic
dispersal of buoyant Cycas, we performed a Mantel test to quan-
tify the correlation between pairwise genetic distance and geo-
graphical distance of all 45 buoyant Cycas in this study. All
analyses were performed in R v.3.6.3 (R Core Team, 2020).
First, we estimated the relative geographical distance between
each accession based on their sampling locality (Table S1) using
the STATS package in R. Then we employed the package APE v.5.4
(Paradis & Schliep, 2018) to calculate the pairwise genetic dis-
tance of each accession based on the complete plastomic
sequences under the default F80 model. Lastly, the Mantel test
was performed by the package ADE4 v.1.7 (Dray & Dufour,
2007) with 10 000 permutations to generate the observation

r-value as well as simulated P-value, and we used GGPMISC v.0.3.8
(Aphalo, 2020) and GGPLOT2 v.3.3.3 (Wickham, 2016) for sim-
ple linear regression and plotting.

Ocean drift modelling

We used an individual-based Lagrangian particle model (Bennett,
2006) to predict the possible trajectories and stranding events of
passively drifting individuals (Cycas seeds herein). The modelled
surface current fields we used here were from the Global Ocean
Ensemble Physics Reanalysis (GOEPR) which was developed by
the Copernicus Marine Environment Monitoring Service
(CMEMS: https://marine.copernicus.eu/). A high spatial and
temporal resolution of the ocean model resolves mesoscale eddies,
which can strongly affect the dispersal and connectivity of drift-
ing organisms. The GOEPR model has a high horizontal resolu-
tion of 0.25° and 75 levels of vertical coverage, starting from 1
January 1993 and providing daily-mean/monthly-mean, creating
a close-to-reality, 3D simulation of World Ocean dynamics as it
assimilates satellite altimetry, temperature, salinity measurements
and in situ observations. Model-based and observational studies
indicate that major surface current directions in Indo-Pacific
remained relatively unchanged in the Pliocene compared to the
modern (Haywood & Valdes, 2004), and most continents were
essentially at their present positions during that period (Hall,
2009). We used the contemporary GREPV2-DAILY ocean cur-
rent dataset of 2010 as our simulation input; the option of the
year 2010 was arbitrary. For the wind factor in our passive ocean
surface drift modelling, we applied the global atmospheric model
to obtain ocean-wind variables from National Centers for Envi-
ronmental Prediction (NCEP, source from https://pae-paha.pac
ioos.hawaii.edu).

The passive drift trajectories of individuals were computed
using the OceanDrift model implemented in the Python-based
Lagrangian trajectory simulation framework OPENDRIFT (Dages-
tad et al., 2018) (available on https://github.com/OpenDrift).
We seeded a 2% fraction as the factor of wind drift (wind speed
at which elements will be advected) which is the default setting in
OPENDRIFT. Three subregions were predefined based on the
whole range of buoyant Cycas according to the phylogenetic
results: the Pacific Ocean (Pacific), the Sunda Shelf (Sunda) and
the Indian Ocean (Indian). We first ran the general simulations
based on a total of 10 000 particles (buoyant seeds) from 25 sites
representing the global occurrence across all three subregions
based on the present distribution of buoyant Cycas (nine, seven
and nine from Pacific, Sunda and Indian subregions, respectively;
Table S3). Then the passive drift trajectories of individuals from
the three subregions were simulated. For all simulations described
above, 400–500 particles were released from each locality, repre-
senting the rough seed reproduction from one mature female
cone. Cycads are rather variable in their coning season (Griffith
et al., 2012). The fruiting seasons and the centralized months of
seed maturation for Cycas are from June to February (based on
our field observation). Hence, in this study, we set two releasing
dates for passive drift simulation as 1 July and 1 January. Evi-
dence shows that it takes 10–18 months after release from cones
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for sufficient maturity before germination in most species of the
genus Cycas subsection Rumphiae (Lindstrom AJ, unpublished
data), and early observations and experiments on the buoyant
Cycas in Fiji showed they could float on water for months
(Guppy, 1906). To make the simulation computationally inex-
pensive, we simulated each drifting process for a conservative
180-d period and recorded the trajectories every 6 h with a final
output time step of 12 h. Although our simulation parameters
are idealized, the objective of this study was to provide a represen-
tation of the potential dispersal for buoyant Cycas under contem-
porary ocean currents.

Additionally, to evaluate the sensitivity of current velocity
uncertainty in influencing the seed drifting, we used the constant
current module in OPENDRIFT by setting the seawater velocity as
zero and simulated the trajectories of particles under two uncer-
tainty levels: a low threshold value of 0.5 m s�1 and a high one of
2 m s�1. The releasing sites, numbers and simulating time of par-
ticles were set the same as described above.

Results

Plastome assembly and structural characterization

The plastomes of buoyant Cycas displayed identical plastomic
features in annotation, with a total of 133 genes annotated (87
protein-coding genes, 37 tRNA, eight rRNA and a nonfunctional
tufA gene). All plastomes were highly conserved and displayed
typical quadrantal structure within Cycas, with neither large
structural variation (inversion, deletion) nor gene loss detected
(Figs S2,S3). Notably, we found a 317-bp deletion around posi-
tion 118k, and this indel was shared by all samples from the
Indian Ocean coast (see C. zeylanica and C. thouarsii in Fig. S3).
A slight IR expansion (> 50 bp) to LSC was detected across all
buoyant Cycas compared with the inland species C. szechuanensis
(Fig. S4), yet this expansion was conserved within the buoyant
group. The Pacific Cycas species – namely C. seemanii, C.mi-
cronesica and C. bougainvilleana – shared an 8-bp sequence in
IRb from the trnL gene, whereas the remaining buoyant Cycas
shared a length of 9 bp (Fig. S4).

Phylogenies and divergence time estimation

IQTREE generated identical topologies based on the complete
plastomic dataset and protein-coding gene dataset, but the com-
plete dataset yielded greater bootstrap values in many nodes
(Fig. S5a,b). The best tree inferred by RAXML based on the com-
plete plastomic dataset was consistent with IQTREE results
(Fig. S5c), whereas the RAXML topology based on the protein-
coding gene dataset differed from the above three in several clades
(Fig. S5d). Thus, the ML topology inferred by IQTREE based on
a complete plastomic dataset is used as the favored ML tree in the
subsequent discussion. In this phylogenetic tree, all six accessions
from three Cycas sections are resolved as sister to the buoyant
Cycas clade. Within the buoyant Cycas clade, many accessions
from the same morphologically recognized species did not cluster
together, because of the use of the uniparentally inherited marker.

For example, C. seemanii from New Caledonia (Voucher 19450)
is not close to other C. seemanii lineages (Fig. S5), which proba-
bly is caused by a cultivation mixture. Nevertheless, we obtained
three strongly supported subclades within the buoyant Cycas
clade, which correspond to the geographical subregions of Pacific
Ocean (Pacific), Sunda Shelf (Sunda) and Indian Ocean (Indian)
(Fig. 1).

The MCC tree generated by BEAST analysis resolves most of
the deep nodes of buoyant Cycas (Fig. 2), whereas it conflicts with
the ML tree in several shallow nodes where the PP and BP values
are < 0.9 and 90, respectively (Fig. S6). Despite this, all three
subclades of buoyant Cycas generated by the ML tree are strongly
supported in the MCC tree (Figs 2, S6). Based on the divergence
time estimation, the Cycas crown was estimated as c. 10 Ma (95%
HPD (highest posterior density) 16.60–4.51Ma), after a long
branch divergence with its sister Zamiaceae (Fig. 2). The diver-
gence of three subclades of buoyant Cycas was estimated to be in
the early Pliocene (4.81Ma, 95%HPD 7.94–2.00Ma), and the
dispersal and diversification of buoyant Cycas within each region
occurred in the Quaternary (2.44Ma (95%HPD 4.33–0.49Ma),
1.34Ma (95%HPD 2.30–0.50Ma) and 1.98Ma (95%HPD
3.46–0.54Ma) for clades II (Pacific), III (Sunda) and IV (Indian)
respectively]. It is noteworthy that there are two independent lin-
eages from both clades II and IV (Fig. 2, C. micronesica from
Palau and C. sundaica from Flores, respectively), which makes
the clade age estimation more than two-fold greater than that by
excluding the two independent taxa (2.44 vs 1.12 Ma and 1.98 vs
0.84Ma, respectively).

Estimation of dn/ds substitution rates, nucleotide diversity
and Mantel test

All Cycas species are extremely conserved in evolutionary rates
and shared very close dn and ds substitution rates (Fig. 3a).
Specifically, the inland nonbuoyant Cycas are more scattered than
buoyant Cycas in the dn vs ds plot. Samples from three subclades
of buoyant Cycas aggregate separately, and subclades III and IV
are closer to each other than to subclade II, which is consistent
with the phylogeny. We found no significant difference in dn/ds
between nonbuoyant Cycas and the buoyant clade, whereas a sig-
nificantly greater dn/ds value was detected in buoyant subclade
III (Sunda Shelf) than in subclades IV and II. By contrast, the
nucleotide diversity was lowest in subclade III compared to sub-
clades II and IV, regardless of the total or average diversity level
(Table 1; Fig. 1). The average nucleotide diversity level remained
the lowest in the Sunda Shelf clade compared to the core Pacific
Ocean clade and core Indian Ocean clade (Table S4; Fig. 2). A
relatively strong positive correlation between genetic and geo-
graphical distance was detected (r = 0.43; P < 0.0001; Fig. 4).

Ocean drift modelling

According to the ocean drift modelling results when starting from
different months (Figs 5, S7), no great difference was found
between the two sets of simulations except the stranding on Tai-
wan and Madagascar islands. Generally, the July-initiated
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simulation of buoyant Cycas better corresponded to its contem-
porary distribution (Fig. S1) as a consequence of simulated colo-
nization events occurring in Madagascar but not in Taiwan
(Fig. 5), unlike in the January-initiated simulations (Fig. S7).
Therefore, we will focus on the July-initiated simulation results
in the following interpretations.

After a half-year simulation, c. 72% of particles had met the
coastline, mostly in the Philippines, Papua New Guinea, Java,
Sumatra and East Africa (Fig. 5a). This simulation, although
based on a set of simplified priors, matches well with the observed
occurrence of buoyant Cycas (Fig. 1). Significantly, we found
there were very few overlapping trajectories among the three pre-
defined subregions, and the stranded events mostly were
restricted in each subregion (especially in the Sunda region;
Fig. 5). Few exceptions were the trajectories around Palau
(Fig. 5b, from Sunda to Pacific) and eastern Borneo (Fig. 5c,
from Pacific to Sunda). Additionally, strong westward trajectories
were detected from Sri Lanka/Sumatra to East Africa (Fig. 5a,b).
The passive drift trajectories in the Pacific Ocean based on July-
initiated simulations displayed a general westward tendency

(Fig. 5d) but were weaker than those initiated in January
(Fig. S7d).

The simulation result using a low level of ocean current velocity
uncertainty shows most seeds drifting around the release sites with
connectivity rarely established within a region (0.5 m s�1 scheme;
Fig. S8a), whereas using a higher velocity uncertainty produced
densely stranded particles along the coasts with few particles ran-
domly drifting in the ocean (2 m s�1 scheme; Fig. S8b).

Discussion

In this study, we revealed low plastomic variation but a clear
genetic structure of the buoyant Cycas, and congruence between
ocean current modelling and both the phylogeographic patterns
and the contemporary distribution of these species. Furthermore,
the significantly lower selective pressure but the higher genetic
diversity detected in the Pacific and Indian Ocean clades than the
Sunda Shelf clade suggests adaptation to new niches after
transoceanic dispersal. Although there are limitations to the two
approaches used (e.g. idealized parameters in ocean drift
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modelling and phylogeography inferred based only on plastomic
data), our results suggest a primary role for ocean currents in
shaping the distribution and phylogeographic pattern of this ter-
restrial plant group. In the following, we further discuss the prob-
ability and processes of transoceanic long-distance dispersal
(LDD) in buoyant Cycas, the level of congruence in inferring
from phylogenetics vs. mechanistic ocean-drift simulations, the
genomic signature on buoyant Cycas, and the main implications
of ocean modelling.

Transoceanic LDD and connectivity establishment in
buoyant Cycas

The low genetic variation, highly conserved plastome structure,
and post-Pliocene divergence for the Cycas between the Pacific
and the Indian Oceans further confirmed the importance of
LDD in this group by previous studies (Dehgan & Yuen, 1983;
Hill, 1996; Keppel et al., 2008; Xiao & M€oller, 2015; Mankga
et al., 2020). Because Cycas seeds are poisonous and heavy
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Table 1 Summarized information of the three subclades from buoyant Cycas.

Clades
Defined
region

Number of
Accessions

Number of
Species

Total nucleotide
diversity

Average nucleotide
diversity

Average dn/
ds

Divergence time
(Ma)

II Pacific Ocean 17 4 0.00028 1.65E-5 0.6202 2.44
III Sunda Shelf 14 4 0.00017 1.21E-5 0.6220 1.34
IV Indian Ocean 14 5 0.00025 1.79E-5 0.6213 1.98

Dn, nonsynonymous substitution rates; ds, synonymous substitution rates; Ma, Myr ago.
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Fig. 4 Mantel test analyses of buoyant Cycas. (a) Mantel test correlation result, the original value of the correlation between the distance matrices is
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Fig. 5 Simulated stranding (orange) and active (blue) distribution of buoyant Cycas propagules across the Indo-Pacific. Trajectories are represented as gray
lines and were generated using velocity fields from a high-resolution GOEPR ocean model simulation. Particles were released hourly for 180 d (1 July 2010
to 28 December 2010) from (a) a total of 25 sites globally; (b) nine sites from the Indian Ocean coast; (c) seven sites around the Sunda Shelf; (d) nine sites
from the Pacific Ocean coast.
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(Bradley & Mash, 2009; Marler et al., 2010), birds and winds are
very unlikely to disperse them over such long distances, rendering
transoceanic drift the most plausible LDD mechanism.

Although a single event of a sufficiently prolonged seed trans-
port by ocean currents over such large geographical scales is
extremely rare, producing numerous propagules makes
transoceanic LDD feasible (Nathan, 2006; Nathan et al., 2008;
Smith et al., 2018). Our simulations indicated that, with
transoceanic drift for up to six months and a sufficient number of
propagules, connectivity among established populations of buoy-
ant Cycas (>72% stranded seeds) is feasible with the assistance of
stepping stones in the Pacific and Indian Ocean (Fig. 5a). Based
on the ocean modelling results, westward dispersal of buoyant
Cycas is driven primarily by the Equatorial Current (Hu et al.,
2015). This current facilitates the spread into the Indian and
Pacific regions, transporting propagules from Java and Sumatra
to Sri Lanka, Seychelles and East Africa (Fig. 5b), and from
Guam, Fiji and New Caledonia to the west (Fig. 5d). Potential
evidence for the effectiveness of dispersal in buoyant Cycas across
the oceans is provided by the successful recolonization of
Krakatau Island (Indonesia) by Cycas rumphii in 1918, only 25 yr
after a volcanic eruption sterilized the island (Whittaker et al.,
1989).

Remarkably, clades at the edge of the Sunda Shelf (Flores and
Palau islands) display relatively early divergence from their sister
lineages. Neither phylogenetic data nor seed dispersal trajectories
suggest connectivity between Pacific and Indian Ocean taxa, pos-
sibly resulting from the Sunda Shelf barrier (Briggs, 1974;
Gaither et al., 2010). Furthermore, the Sunda lineage has an ear-
lier divergence than the core Pacific and Indian clades (Fig. 2),
suggesting that the ancestors of buoyant Cycas arose in the Sunda
region and that the two independent taxa at the eastern and west-
ern edges of the Sunda Shelf may originate from early dispersal
and subsequently gave rise to other taxa in the Pacific and Indian
clades. Simulations revealed frequent trajectories from the Sunda
region (Sulawesi and Halmahera) that can reach the Palau and
Flores islands (Fig. 5c) or adjacent regions (Fig. S7c). Addition-
ally, plastomic alignments showed that the 317-bp (118k posi-
tion) indel, which was absent in the Indian clade, was preserved
in the C. sundaica plastome from Flores as well as all Sunda clade
lineages (Fig. S3). Analogously, a shared loss of 17 bp (119k posi-
tion) in the Palau lineage and the Sunda clade was present in the
Pacific clade (not shown in the figure). These significant charac-
teristics shared between Sunda lineages and the two taxa in the
Pacific and Indian suggest the retention of ancestral plastomic
sequences, making Palau and Flores the likely ‘stepping stones’ in
Cycas dispersal to the Pacific and the Indian Oceans.

Dispersal and other movements of humans also may play a role
in dispersing buoyant Cycas, given the significance of cycads to
certain ethnic groups as important cultural and food plants
(Bonta et al., 2019). For example, C. seemannii has been of great
cultural importance and could have been an important food
source for the first colonizers throughout the Pacific islands (Kep-
pel, 2009). Considering the active trade that existed between the
various Pacific islands in pre-European times (Kirch & Hunt,
1988; Cann & Lunn, 1996), the exchange of culturally

important plant materials may have occurred. However, our phy-
logenetic reconstruction does not support recent transregional
dispersal events by humans, as the buoyant Cycas lineages among
the three regions all diverged in the Pleistocene (Figs 1,2).

Although ocean currents can disperse Cycas over long dis-
tances, their buoyant seeds must tolerate the hazards of remaining
long periods at sea, commonly through a dormant phase (Gille-
spie et al., 2012). Many cycad species have developed seeds that
need a pre-germination latency after detaching from the megas-
porophylls, which consists of the growth and elongation of the
embryo into the megagametophyte tissue (Norstog & Nicholls,
1997). This process varies in different cycad taxa (Calonje et al.,
2011) but is particularly slow in most species of the Rumphiae
group (10 to 18 months). In addition, the sarcotesta of Cycas
remains intact for weeks, repelling the water with its thick, waxy,
resinous epidermis, and provides sufficient time for the embryo
to reach maturity while crossing the ocean (Dehgan & Yuen,
1983). Within buoyant Cycas, the species with the longest pre-
germination latencies are C. thouarsii, C. micronesica and C. see-
mannii from the more remote Indian and Pacific regions, whereas
C. edentata and C. rumphii from the ancestral Sunda region have
shorter latency phases (A. J. Lindstrom, unpublished data). The
observed variation in pre-germination latency potentially rein-
forces reproductive isolation among species based on different
dispersal distances (see Fig. S1).

Phylogeography of buoyant Cycas and the association with
ocean currents

Spatiotemporal patterns of water dispersal in plants are likely to
be nonrandom in the context of both recent invasions (Horvitz
et al., 2017) and long-term plant evolution and phylogeny
(Kudoh et al., 2006). Our study provides clear evidence for the
important role of ocean gyres in shaping the divergence and the
phylogeographic pattern of buoyant Cycas (Fig. 1), as the passive
drifts of propagules from the three clades remained largely con-
fined to their respective regions (Fig. 5b,c,d). This confinement
driven by ocean currents also is in line with the significant corre-
lation between genetic distance and geographical distance result,
which implies an isolation-by-distance (IBD) pattern in buoyant
Cycas (Fig. 4). Therefore, the isolation and genetic discontinuity
of buoyant Cycas may be maintained by directional ocean cur-
rents that impede mixing, thereby hampering frequent gene flow
between Pacific, Sunda and Indian regions via LDD.

The genetic discontinuity of buoyant Cycas maintained by
ocean circulation in Indian and Sunda clades also conforms to
the realm-scale boundary between the Western and Central
Indo-Pacific, which is associated with discontinuous habitat
types, geomorphological and oceanographic features of coastal
and shelf areas in the two realms (Spalding et al., 2007; Crandall
et al., 2019). The genetic discontinuity of Pacific and Indian
provinces has always been explained by the existence of substan-
tial archipelagos in the Sunda Shelf, a long-recognized barrier
between the Pacific and the Indian Ocean in separating faunal
distributions (Briggs, 1974). Historical and contemporary disper-
sal barriers between the Pacific and Indian oceans are indicated
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by the confinement of many marine species primarily to one
ocean or the other (Briggs, 1999; Gaither et al., 2010). Our
results also indicate the overall strength of the Sunda Shelf barrier
in shaping regional species distribution and the genetic pattern of
buoyant Cycas. This is supported by three lines of evidence: (1)
the absence of shared species in the Pacific and Indian subclades;
(2) the relative distant relationship between the Pacific and
Indian subclades; and (3) the significant distance effects across
regions inferred by IBD. It is widely accepted that glacial cycles
throughout the Pleistocene were accompanied by lower sea levels
(as low as 120 m below present), making the Sunda Shelf land-
mass a nearly complete barrier between the two oceans (Voris,
2000). Although our study indicates that the Pliocene divergence
of buoyant Cycas from Indian and Pacific clades (4.81 Myr ago
(Ma), 95%HPD (highest posterior density) 7.94–2.00Ma) was
not associated with that epoch, the emergence of this barrier
could have enhanced the genetic discontinuity of buoyant Cycas
in the Indian and Pacific Oceans.

At a regional scale, the classic biogeographical barriers within
the Sunda Shelf (i.e. Wallace’s Line and Huxley’s Line) did not
affect the observed genetic patterns of buoyant Cycas, suggesting
that these barriers are porous for some plants and supporting the
previous finding for Begonia (Thomas et al., 2012) but not for
Phalaenopsis (Tsai et al., 2015). This is not surprising, consider-
ing the dispersal potential of buoyant Cycas seeds. Instead,
Weber’s and Lydekker’s lines appear to be more relevant in
impacting the genetic pattern, as they separate most Pacific and
Sunda lineages but not the heterogeneous lineages from Halma-
hera (Fig. 1).

Genetic signature shaped by LDD and past climate
oscillations

Past climate oscillations are expected to leave signatures in plant
genomes. Plastomes, which evolve in their entirety and interact
with nuclear genomes, leading to intertwined coevolution
(Rousseau-Gueutin et al., 2018), will also mutate to respond to
the pressure from shifted niches and constantly changing envi-
ronments. Selection pressure shows no significant differences
between buoyant and nonfloating Cycas, but significant differ-
ences among different biogeographical regions (Fig. 3b,c). This
indicates that Cycas lineages from the Indian and the Pacific
Ocean are undergoing faster and greater negative (purifying)
selection than those in the Sunda region, suggesting that selection
is purging changes that cause deleterious impacts (Wagner, 2002)
on the fitness of Cycas in the Indian and Pacific Oceans. These
changes, together with more recent colonization events from
Sunda to Pacific and Indian regions, imply the ongoing innova-
tion of buoyant Cycas plastomes to adapt to new niches after col-
onizing the two oceanic coasts.

Climatic oscillations in the Sunda Shelf since the Miocene
could shape the genetic diversity pattern. Sea level has markedly
changed in the Sunda Shelf over the Pleistocene, resulting in fre-
quent emergence and submergence cycles of part of the Sunda
landmass (Voris, 2000; Woodruff, 2010; Hanebuth et al., 2011).
These cycles of exposure and inundation may have facilitated the

second contact (i.e. two allopatrically distributed populations to
be geographically reunited), and tend to homogenize the distri-
bution of genetic variation on continental shelves (Benzie, 1999;
Crandall et al., 2019). Our results reflected this homogenization
as indicated by the low average nucleotide diversity of buoyant
Cycas from the Sunda region (Tables 1, S4; Fig. 1). Evidence of
the second contact also could be found in the five unsampled
Cycas species with transitional characters of limited spongy layers,
all from the Philippines (Table S2), as they could be results of
present or past hybridization with the subsection Rumphiae
(Lindstrom et al., 2009). However, future studies with more
extensive sampling are needed to confirm these suggestions.

Implications of ocean drifting modelling

This study illustrates the importance of ocean drifting modelling
in simulating connectivity establishment and predicting species
distribution, especially for underexplored or undiscovered areas.
The Lagrangian method, used widely in marine organisms
(Brischoux et al., 2016; Gaspar & Lalire, 2017), seems applicable
to estimate the distribution range of littoral plants that produce
propagules with transoceanic dispersal potential, such as buoyant
Cycas. Buoyant Cycas species are absent from some regions that
should be receiving propagules based on our simulations, such as
the Maldives archipelagos and the continental margins of Soma-
lia and East Australia. This mismatch, may be the result of (1)
lack of successful post-colonization adaptations or local extinc-
tion as a consequence of geological and climate change (Urban,
2015); (2) deviated simulations compared to the true LDD pro-
cess because the modelling is sensitive to the uncertainty of the
ocean velocity (Fig. S8); or (3) undiscovered populations of
buoyant Cycas being present in the regions. Additionally, the bet-
ter correspondence of July-started (vs January-started) simula-
tions (Fig. 5) with the current distribution of Cycas (Fig. S1)
highlights the importance of the actual timing of seed release and
fits growing evidence that the temporal dynamics of seed produc-
tion and release affect LDD patterns (Nathan & Katul, 2005;
Wright et al., 2008). Therefore, future studies should take the
actual seed release period into account when using ocean drift
modelling for species range prediction.

Conclusion

In order to test the hypothesis that phylogeographic patterns of
littoral plants with buoyant propagules are related to ocean cur-
rents, we used plastomic data to help reveal the genetic structure
of buoyant Cycas and simulated oceanographic drift to estimate
seed dispersal patterns. Our results highlight the importance of
combining these two approaches to explain the phylogeography
of ocean-dispersed littoral plants. Furthermore, the utility of the
plastid genome to track seed dispersal and assess genomic foot-
prints under climate oscillations in recently diverged plant lin-
eages is demonstrated by (1) the conformation of three major
taxa of buoyant Cycas to prevalent ocean currents; (2) the identifi-
cation of two critical stepping stones (Flores and Palau) for dis-
persal; and (3) the detection of comparative levels of negative
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selection in different phylogeographic regions. The integration of
ocean current modelling and phylogeography therefore poten-
tially has broad applications to other littoral taxa with buoyant
seeds (e.g. Cocos nucifera and Barringtonia asiatica), providing an
opportunity for novel insights into the evolution of terrestrial
coastal ecosystems globally.
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