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 Summary

 1. Plant fecundity and seed dispersal often depend on environmental variables that vary in space.

 Hence, plant ecologists need to quantify spatial environmental effects on fecundity and dispersal.
 2. We present an approach to estimate and model two types of spatial environmental effects: source

 effects cause fecundity and dispersal to vary as a function of a source's local environment, whereas

 path effects depend on all environments a seed encounters during dispersal. Path effects are
 described by first transforming physical space so that areas of low seed permeability are enlarged
 relative to others, and then evaluating dispersal kernels in this transformed 'movement space'.

 3. Models for source and path effects are embedded into the established inverse modelling (IM)
 framework. This enables the statistical estimation of environmental effects from easily available
 data on the spatial distribution of seeds, seed sources and environmental covariates.
 4. The presented method is applied to data from a well-studied population of the wind-dispersed
 Aleppo pine (Pinus halepensis). We use local tree density as an environmental covariate, model
 fecundity as a function of a tree's basal area, and consider four dispersal kernels: WALD (a closed-form

 mechanistic model for seed dispersal by wind), log-normal, exponential power and 2Dt.
 5. The inclusion of source and path effects of tree density markedly improves IM performance. IM

 analyses and independent data agree in the parameter range of the mechanistic WALD kernel and
 in suggesting weak negative density-dependence of fecundity. Of 64 IMs considered, the best four
 involve the WALD kernel and negative source effects on its shape parameter. The best IM predicts

 that increasing tree density at the source shortens median dispersal distance while enhancing
 long-distance dispersal (LDD). Additionally, path effects lead to lower seed permeability of high
 density areas. These results shed light on the mechanisms by which environmental variation affects

 fecundity and dispersal of P. halepensis. Moreover, the predicted density-dependent dispersal
 causes a pronounced lag-phase in simulations of population spread.
 6. Synthesis. The presented method can quantify environmental effects on fecundity and dispersal
 in a wide range of study systems. The movement space concept may furthermore promote a unified

 understanding of how various organisms move through spatially heterogeneous environments.

 Key-words: density-dependence, dispersal kernel, inverse modelling, local interactions,
 mechanistic model for seed dispersal by wind, movement space, path effect, plant fecundity,
 population migration, source effect

 Introduction

 Sessile plants live in spatially heterogeneous environments
 where seed production and dispersal determine the number of

 individuals dispersing between habitat types. This number in
 turn affects the regional dynamics of a species (e.g. Freckleton

 & Watkinson 2002), its ability to track environmental changes
 in space and time (Higgins et al. 2003), and its potential for
 local adaptation to environmental conditions (Kawecki &
 Ebert 2004). * Correspondence author. E-mail: frank.schurr@uni-potsdam.de
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 Due to the importance of seed production and dispersal,
 plant ecologists need to know how many seeds a plant produces

 and how far these seeds are dispersed. In many systems, these

 simple questions are difficult to answer (e.g. Clark et al. 1998,

 1999b; Nathan & Muller-Landau 2000): pre-dispersal seed
 numbers are often difficult to quantify and tend to overestimate

 the number of successfully dispersed seeds. Alternatively, one

 can infer fecundity from post-dispersal seed densities. How
 ever, this requires knowledge about the mother plants from
 which the seeds originate, which is difficult to obtain because

 dispersing seeds typically cannot be tracked and seed shadows

 of neighbouring plants typically overlap.

 A powerful and elegant solution to the problem of estimating

 plant fecundity and seed dispersal is the so-called 'inverse
 modelling (IM)' approach (Ribbens et al. 1994; Clark et al.
 1998; see also Higgins et al. 2008; Muller-Landau et al. 2008;
 Jones & Muller-Landau 2008). IM simultaneously estimate
 fecundity and seed dispersal from the spatial distribution and

 size of mother plants, and the spatial distribution of seeds.
 They do not require the identification of each seed's mother

 plant, but instead infer fecundity and seed dispersal by
 searching for the fecundity and dispersal models that are

 most likely to generate the observed seed distribution from
 the observed adult distribution. IMs are also commonly used
 on seedling data (e.g. Ribbens et al. 1994), but this practice
 implicitly incorporates post-dispersal processes. Hence,
 special care must be taken when inferring seed dispersal
 processes from kernels fitted to seedling distributions.

 The original application of IM in the context of plant
 dispersal and recruitment (Ribbens et al. 1994) has been
 extended in various directions to accommodate alternative

 dispersal kernels (Clark et al. 1999a), complex random effects

 and fecundity schedules (Clark et al. 2004) and genetic data
 (Jones & Muller-Landau, 2008). However, existing IM

 methods cannot simply be used to estimate effects of spatially

 varying environments on fecundity and dispersal. The study

 of such environmental effects seems particularly important

 for understanding and predicting how plants perform in
 heterogeneous environments and how they will respond to
 environmental change.

 To examine how spatial variation in the environment
 affects fecundity and dispersal, a basic distinction should be
 made among two types of environmental effects introduced
 here as source effects Mi?path effects. Source effects arise from
 the fact that seed sources located in different environments

 may differ in fecundity and dispersal. Hence, source effects
 are a function of the environment in which the seed source is

 located. Path effects arise from the fact that environmental

 heterogeneity along the dispersal path may affect the movement

 and deposition of seeds. Hence, path effects are a function of

 all environments a seed encounters along its dispersal path.
 There is ample empirical evidence for both source and path

 effects on fecundity and dispersal. For instance, it is obvious

 that the local environment experienced by a plant can affect its

 seed production and can thus have a source effect on fecundity

 (e.g. Crawley 1997). Examples of source effects on seed dispersal

 involve cases of animal-dispersed seeds where local condi

 tions at the seed source may affect the composition of the seed

 disperser coterie and the amount of seeds removed (Sargent
 1990; Herrera et al. 1994; Jordano & Schupp 2000; Carlo &

 Morales 2008). In wind-dispersed seeds, turbulence condi
 tions and wind velocities at the source affect a seed's probability

 to be uplifted above the canopy, which is a prerequisite for
 long-distance dispersal (LDD) by wind (Nathan et al. 2002;
 Bohrer et al. 2008; Soons & Bullock 2008). Path effects on
 seed dispersal are evident for animal-dispersed seeds, where
 habitat preferences of seed-dispersing animals cause seed
 deposition to peak in certain environments (e.g. Herrera et al.

 1994; Wenny & Levey 1998; Jordano & Schupp 2000; Wenny
 2001; Russo et al 2006). Path effects on wind dispersal can
 result from spatial variation in wind conditions (Tackenberg

 2003) as well as from collisions of the moving seed with
 obstacles. These processes affect both airborne seed move
 ment (Thiede & Augspurger 1996; Pounden et al. 2008) and
 secondary seed dispersal along the ground (Schurr etal.
 2005). In the case of water-dispersed seeds, spatial variation
 in the geomorphology of streams can greatly affect rates of

 seed deposition (Merritt & Wohl 2002), thus causing a path
 effect on dispersal.

 The wealth of empirical evidence for environmental effects

 on plant fecundity and seed dispersal contrasts with a lack of

 quantitative tools for describing and modelling these effects.

 In this paper, we introduce a new approach capable of quantifying

 source and path effects on fecundity and dispersal. Integral

 to this approach is the idea of measuring space in units of
 'movement space' that are relevant to the dispersing seed, rather

 than in units of physical space. We embed this approach into
 the IM method, and use it to analyse how an environmental
 variable (local tree density) affects fecundity and dispersal of

 Aleppo pine (Pinus halepensis, Miller). Based on this analysis,
 we then explore the mechanisms underlying these environmental

 effects, and examine their consequences for the dynamics of
 population spread. Finally, we discuss how the concept of
 movement space may be extended beyond seed dispersal to
 study the movement of a wide range of organisms.

 Methods

 In this section, we first describe the standard IM framework, extend

 it to incorporate source and path effects on fecundity and dispersal,
 and show that the extended method can estimate such environmental

 effects from simulated data. We then use the extended IMs to quantify

 source and path effects in the recruitment of a P. halepensis population.

 To permit independent assessments of IM estimates, we conclude

 the Methods section by summarizing the available information on
 the fecundity and dispersal of this population.

 INVERSE MODELS OF FECUNDITY AND DISPERSAL

 IMs predict seed arrival at a given location by summing the seed
 shadows of all individual seed sources at this location. The seed

 shadow of an individual plant s is modelled as the product of the
 plant's fecundity Q and a dispersal kernel/(Ribbens etal. 1994;
 Clark et al. 1998). The expected seed number in a seed trap t of area
 A, is thus
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 5,(G,/;,4;?) = Xa(G,;?1ec)/(';,:?d, pM  eqn 1

 where ? is a vector of model parameters containing both fecundity

 parameters ?fec and dispersal parameters ?dlsp, rt is a vector containing
 all distances rst from a given trap t to all seed sources s, and G is a

 vector of size measurements Gs that are used to predict the fecundity

 of the seed sources s. We follow Clark et al. (1999a), in using a tree's

 basal area as this 'size variable' G and modelling fecundity Q as

 Q?GS) = bGs  eqn 2

 so that ?fec = [b]. Alternative allometric fecundity models did not

 improve the fit of IMs to data for P. halepensis (F. Schurr, unpublished

 data, see also Clark et al. 1999b).
 We consider four alternative dispersal kernels, each of which

 describes a two-dimensional probability density as a function of
 dispersal distance r with scale parameter u and shape parameter p

 (hence ?disp = [u, p]). Following the recommendation of Canham &
 Uriarte (2006), we use both flexible phenomenological and mechanistic

 models. The considered dispersal models are the exponential power
 kernel (Ribbens et al 1994; Clark et al 1998, 1999a)

 f(r) =
 2nu-F(2fp)

 exp

 the 2Dt distribution (Clark et al 1999a)

 f(r) = -

 eqn 3

 eqn 4
 1 + ?

 u

 and a bivariate log-normal kernel (Stoyan & Wagner 2001)

 /(0 =
 (2tt)3V:

 -exp  (In r - \if
 2P1

 eqn 5

 where we model the log-scale mean ji as a function of the log-scale

 standard deviation/? and the mean dispersal distance u, so that (I

 = ln(w) - (/?/2)2. This parameterization of the log-normal distribu
 tion ensures that u > 0 and/? > 0 as for the other kernels.

 Finally, we consider the WALD kernel, a closed-form simplification

 of a mechanistic model for seed dispersal by wind (Katul et al 2005)

 f(r)  8tcV  exp  P(r - u)
 lu r  eqn 6

 Formulas to calculate the mean, variance and higher moments of
 these kernels can be found in Klein et al (2006) for the 2Dt and
 exponential power, and in Stoyan & Wagner (2001) for the log
 normal. For details on WALD, see Katul et al (2005); note that
 their eqn 5b is a one-dimensional kernel that denotes u and/? as
 \\! and X, respectively.

 SOURCE EFFECTS ON FECUNDITY AND DISPERSAL

 In agreement with the approach typically taken in geographical
 information systems, we assume that information about the spatial
 variation of environmental conditions can be represented in a
 spatially discrete grid E. To account for source effects, we model the

 fecundity and/or the dispersal parameters of each seed source s as a

 function of the local environment, Es, in the source's grid cell. We

 ensure that b, u and p are positive by using an approach borrowed
 from link functions in generalized linear models (McCullagh &
 Neider 1989)

 bs = exp(?/,0 + ?M?v), us = exp(??0 + ?(/1?y), and

 Ps = expi?^o + ?,^). eqn 7

 For ?", = 0, bs, us and/?5, are thus defined by the 'intercepts' ?w, ?u0

 and ?^o, respectively, whereas the 'slopes' ?M, ?Ml and $p[ describe
 how bs, us and ps change with Es. For ?M = ?(<1 = ?^ = 0, the model
 reduces to a 'standard' IM without source effects.

 PATH EFFECTS ON DISPERSAL

 While the standard IM approach can easily be extended to describe

 source effects, the incorporation of path effects is more challenging,

 because these effects depend not only on the environmental conditions
 at the source but on all environments a seed encounters between

 source and deposition. For the sake of simplicity, we assume that

 path effects depend only on the environments crossed by the straight

 line extending from the source to the deposition site.

 We describe these path effects by evaluating the dispersal kernel
 around a seed source in 'movement space' rather than physical space.

 Movement space is obtained by projecting physical space so that
 distances through environments with low seed permeability are
 enlarged relative to distances in other environments (Fig. la). We
 emphasize that the concept of 'movement space' is widely used in
 everyday life: for instance, distances along hiking trails are typically

 expressed in units of movement space ('walking hours') rather than
 in units of physical space ('kilometres'). For a hiker, units of movement

 space are more informative because the probability of arrival at a
 certain point in a certain time (e.g. before sunset) does not only
 depend on the physical distance to that point but also on the roughness

 of the terrain crossed along the path.

 Formally, we express the projection of physical space onto move
 ment space as an inhomogeneous central dilation with origin at the
 source (Fig. la). In polar coordinates, a point P at distance r and
 angle 0 from the source is projected according to

 P(Q, r) -> P'(0', r') with 0' = 0 and r' = ^dcwc, eqn 8

 where c denotes all cells intersected by a straight line between the
 source and the trap, dc is the length of the line segment in each cell
 (X d' = r), and wc is a 'resistance' factor that reflects the cell's c

 environment. The lower the seed permeability of an environment,
 the larger its resistance factor wc. Setting wc > 0 ensures that for any

 angle 0, an increase in physical distance from the source, r, also
 increases the distance in movement space, r'. Consequently, the
 projection is bijective so that any point in physical space has a
 unique equivalent in movement space, and vice versa. To describe
 the relationship between a cell's resistance factor wc and its environmental

 value Ec, we again use a log-link

 wc = exp(?M>1isf). eqn 9

 The omission of an 'intercept' in eqn 9 sets wc = 1 for the 'reference

 environment' Ec = 0 An intercept is redundant because it would
 mean that all wc are multiplied with the same constant factor. The

 resulting projected grid would then simply be a rescaled version of

 the grid obtained without an intercept. Note that for ?H, = 0, the
 model reduces to an IM without path effects.
 The single parameter ?,vl thus governs the projection of physical

 space onto movement space and provides a simple way of describing

 path effects on seed dispersal. Depending on the environment and
 the choice of ?Ml, a simple isotropic kernel in movement space can
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 (a)  Physical space  'Movement space1

 S* !?I ?p  S' = S*
 EL

 (b)

 9^

 (C)
 Physical space  'Movement space'

 \r \t
 Fig. 1. (a) Path effects on seed dispersal are modelled by projecting the
 physical space around a seed source S onto 'movement space' so that
 S' = S. The projection enlarges distances in environments with low
 permeability for moving seeds (grey cell) relative to distances in other
 environments (white cells). Consequently, areas of low permeability
 are enlarged and locations 'shaded' by these areas (point P in physical
 space) are projected to be further away from the source (point P'in

 movement space), (b) A simple isotropic kernel in movement space
 (small insert) can describe anisotropic and discontinuous seed dispersal in
 physical space (large graph). The large graph shows two-dimensional
 seed densities in physical space predicted by an exponential power
 kernel in movement space. The minor peak indicates an area with low
 seed permeability that receives more seeds because it is enlarged
 relative to other areas. The arrow indicates an area behind this

 secondary peak that receives fewer seeds due to 'shading effects' (see
 Fig. la), (c) To efficiently project trap areas from physical space to
 movement space, we assume that traps have the shape of a ring sector.
 In physical space, this sector has length d and width a r (the product
 of apex angle a, and the distance r between the trap centre and the
 seed source S). In movement space, trap length is d w, (where w, is the

 resistance factor of the trap's local environment), and trap width is
 a r'(where r'is the trap-source distance in movement space).

 describe anisotropic and discontinuous seed dispersal in physical
 space (Fig. lb): environments with low permeability for moving
 seeds (i) receive more seeds because they are enlarged relative to
 others; and (ii) reduce seed deposition in the areas behind them by

 increasing the movement distance between these 'shaded' areas and
 the seed source. Hence, by invoking the concept of movement space

 it is possible to describe a number of phenomena that cannot be
 incorporated into standard IMs.

 To embed the concept of movement space into IMs, it is necessary

 to project both the distances between sources and seed traps, and the

 areas of the seed traps (if only distances were transformed,
 the dispersal kernel would not integrate to 1 in physical space). For

 traps of arbitrary shape, the calculation of projected trap areas is
 computer intensive. Hence, we approximate trap shapes as sectors
 of rings centred at the source (Fig. lc). In physical space, such a ring
 sector has area A defined as

 A = ard

 where r is the distance between the source and the trap centre, d is

 the length of the trap in this direction, and a (in radians) is an apex

 angle that defines the width of the trap, a r (Fig. lc). In movement

 space, the projection of this ring sector has area

 r'
 A' = ar'dw, = A?w, eqn 10 r

 where w, is the resistance factor of the environment in which the trap

 is situated (Fig. lc).
 The projection of physical space onto movement space depends

 on the source's position in a heterogeneous environment E (Fig. 1).
 To calculate the contribution of each seed source s to all traps, it is

 thus necessary to separately project the physical space for each
 source and then evaluate the dispersal kernel for this projection. As

 in standard IMs (eqn 1), the predicted seed number in trap / is then
 calculated as the sum of the contributions of all seed sources.

 S,(G, r? 4, ?; p) = ? &(GS; ftJ/Oi; ?dispK, eqn 11

 MODEL FITTING AND PARAMETER ESTIMATION

 To fit the IMs (eqns 1 and 11) to seed trap data, we calculate the
 likelihood of the data under a model with parameter vector ?. Under

 the assumption that errors are Poisson distributed, the likelihood is a

 product of Poisson densities (Clark et al. 1999a)

 L(s | ?) = nwPoisson(5,(?)) eqn 12

 where S is a vector of seed counts from n seed traps, and the mean

 of the Poisson distribution is given by S,(?), the seed number predicted

 according to eqn 1 or 11. To obtain maximum-likelihood estimates
 of the parameters ?, we minimized the negative log-likelihood (-In L)

 using the simplex algorithm (Neider & Mead 1965) with several
 overdispersed starting points. All numerical calculations were
 done in R 2.4.1 (R Development Core Team 2006) and R code for
 fitting IMs with source and path effects is given in Appendix SI in

 Supplementary material. Since a main emphasis of this study is
 on the comparison of alternative models, we use a frequentist
 framework, where there is more agreement on methods of model

 selection than in a Bayesian framework (Carlin etal. 2006). We
 emphasize, however, that the IMs discussed here can also be embedded

 into a Hierarchical Bayesian framework (see Clark et al. 2004).
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 Table 1. Test of an inverse model with a path effect and source effects on fecundity and dispersal. The table gives the 'true' parameter values used
 to predict mean seed arrival at a seed trap, as well as the median and the 95% confidence interval (in brackets) of estimates for 500 Monte Carlo
 combinations of fractal landscapes, source and trap configurations

 ??0 ft,, ?* ?,l ?? ?*l ?n,
 'True'value 2.00 0.05 1.00 0.00 8.00 0.05 0.05

 Parameter estimate 2.03 0.05 1.02 0.00 8.01 0.05 0.05
 (-5.36,8.40) (-0.34,0.33) (0.37,1.62) (-0.04,0.02) (2.85,16.93) (-0.18,0.35) (0.04,0.07)

 To test the proposed method, we generated 500 Monte Carlo
 realizations of landscape, source and trap configurations. The
 landscapes were grids of 100 x 100 cells with each cell having a value

 of an environmental variable that ranged from 0 to 50 (in arbitrary
 units). Two-dimensional fractal distributions of this environmental

 variable were generated using the midpoint displacement algorithm
 (Saupe 1988) with a Hurst factor of 0.8, causing positive spatial
 autocorrelation. Five hundred seed sources were placed completely
 spatially random (CSR) within the central area of 60 x 60 cells, and

 were assigned a size drawn from a uniform random distribution
 between 0 and 1000 (in arbitrary units). One hundred seed traps
 of 1 m2 were distributed randomly (CSR) across the entire land
 scape. Fecundity was modelled according to eqn 2 with ?M = 8 and
 ?,,, = 0.05. Moreover, we simulated a source effect on the scale of a

 log-normal dispersal kernel (?l<0 = 2 and ?M, = 0.05), but not on kernel

 shape (?^=l; ?pl=0). Path effects were included by setting
 ?,,., = 0.05. For each trap we then obtained a random number of
 trapped seeds by drawing from a Poisson distribution with mean
 given by eqn 11.
 We analysed the simulated data sets by fitting a model with a path

 effect and source effects on the parameters of a log-normal dispersal

 kernel. Median parameter estimates from the Monte Carlo simulations

 were virtually identical to the 'true' values, despite considerable
 variation between simulations (Table 1). This demonstrates that the

 proposed method can produce unbiased estimates of source and
 path effects on fecundity and dispersal.

 EXAMPLE! ENVIRONMENTAL EFFECTS ON FECUNDITY
 AND DISPERSAL OF PINUS HALEPENSIS

 We use the presented method to analyse environmental effects on
 the fecundity and seed dispersal of Aleppo pine (Pinus halepensis,

 Miller). Pinus halepensis is a native Mediterranean tree that has been

 widely introduced throughout the world (Barbero etal 1998).
 Aleppo pines are monoecious, semi-serotinous (having serotinous
 and non-serotinous cones on the same tree simultaneously) and
 produce large amounts of seeds annually (Nathan et al. 1999; Thanos
 & Daskalakou 2000; Goubitz et al 2004). Seed release is stimulated
 by fire and by Sharav events - dry and hot spells characteristic
 of the eastern Mediterranean, which occur in the spring and fall
 (Nathan et al 1999). The seeds are samara-like structures typical
 of wind-dispersed pines, with a single asymmetric wing loosely
 attached to the seed, which autorotates while falling (Nathan et al
 2001).

 The study site is an area of 60 ha (Fig. 2a) at Mount Pithulim,
 Israel (31?45'N, 35?04'E, 628 m altitude). Mean annual rainfall is
 600 mm, and mean monthly temperature ranges from 25 ?C (August)

 to 12 ?C (January). The vegetation in the study site is a mixture of

 maquis (scrubland) and batha (shrubland). Pinus halepensis is the
 only tree species taller than c. 5 m and is thus a major determinant

 of vegetation structure (for a detailed description of the study site

 Basal area (cm2)
 100
 200
 500
 1000
 2000

 Trap area (m2)
 ? 0.46
 a 0.92

 1.84

 (b)
 Tree density
 (trees/314 m2)

 >12

 Fig. 2. (a) Map of the study site at Mount Pithulim, Israel, showing
 the location and basal area of 1576 Pinus halepensis trees (grey dots)
 as well as the location and area of 54 seed traps (squares). Note that
 symbol sizes are enlarged relative to the actual size of trees and traps,
 (b) Local tree density in circles of 10 m radius around the centre of
 10 x 10 m cells. Tree density is indicated by different shades of grey
 (see legend).

 see Nathan etal. 1999). The large and presumably native Aleppo
 pine population that currently occupies the site has expanded from
 five individuals at the beginning of the 20th century to 1576 P.
 halepensis individuals larger than 20 cm2 basal area in 2006.
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 Between 2003 and 2006 the location of these trees was mapped by
 tachymeter combined with differential GPS, and their basal area
 was calculated by measuring the d.b.h. (137 cm). For this study, we
 only considered trees larger than 20 cm2 basal area, because trees
 below this threshold are rarely reproductive (R. Nathan, personal
 observation). The basal area of the studied trees ranges from 20 to
 3867 cm2 with a median of 177 cm2 and a mean of 278 cm2.

 Local tree density is highly variable (Fig. 2a) and can be expected

 to affect both fecundity and seed dispersal of P. halepensis. Our
 re-analysis of data available from previous work in the site (Goubitz

 et al. 2004) reveals that seed production and seed release are affected

 by the number of conspecific trees in a 10-m radius (see Independent

 data on fecundity and dispersal of Pinus halepensis). Although different

 zones of effects were not tested, it appears that tree density in a circle

 of 10 m radius can reasonably be selected as the environmental
 covariate for our study. This variable could in principle be evaluated

 in a spatially continuous fashion by calculating the number of trees

 in 10 m radius for any tree location and for any point between each

 tree and each trap. However, in concordance with the spatially discrete

 framework formulated above (Fig. 1), we evaluated tree density on
 a grid of 10 x 10 m cells by calculating the number of trees within

 10m distance from each cell centre (Fig. 2b). We chose this spatial
 resolution because it is computationally feasible and corresponds
 with the scale of large tree canopies: in a sample of 60 pine trees of

 the Mount Pithulim population, the maximum canopy radius was
 5.8 m, which is roughly equivalent to a canopy area of 100 m2.
 According to the obtained grid of tree densities (Fig. 2b), 581 trees

 (37%) grow in low density neighbourhoods (< 3 trees/314 m2),
 whereas 446 trees (28%) grow at high density (> 10 trees/314 m2).

 Seed counts derive from 54 seed trap stations, with areas ranging

 from 0.46 to 1.84 m2, and larger trap areas located at larger dis
 tances from the closed stand (Fig. 2a). Twenty-six trap stations
 (48%) were located in low density areas (< 3 trees/314 m2), whereas

 11 trap stations (20%) were located in high density areas (> 10 trees/

 314 m2). At all trap stations, a total of 1255 seeds were trapped
 between 14 April 2003 and 17 May 2006. As the focus of this study

 was on spatial rather than temporal variation, we summed seed
 counts over the entire study period for each trap station. Fecundity
 estimates are thus sums of 3 years.

 To analyse effects of tree density on fecundity and dispersal of P.

 halepensis, we considered IMs with four alternative dispersal kernels

 (eqns 3-6), with or without a source effect on fecundity, scale and/or
 shape of the dispersal kernel, and with or without a path effect,
 yielding a total of 64 alternative models. If the error variance of seed

 counts was well described by a Poisson distribution, these alternative

 models could be compared using Akaike's Information Criterion
 (AIC, Burnham & Anderson 1998). However, since seed counts
 proved to be overdispersed, we instead compared models based on
 their Quasi Akaike Information Criterion (QAIC). The QAIC value
 for each model was determined using the variance inflation factor

 estimated from the model with the lowest negative log-likelihood
 (Burnham & Anderson 1998).

 INDEPENDENT DATA ON FECUNDITY AND DISPERSAL
 OF PINUS HALEPENSIS

 Independent assessments of fecundity and dispersal are essential to
 build confidence in fitted parameters, but difficult to obtain. In fact,

 we are not aware of any IM study which contrasted the fitted
 parameters with independent empirical data. Taking advantage of
 previous work on tree density effects in this population (Goubitz
 et al 2004), and the fact that WALD parameters have a clear

 mechanistic interpretation (Katul et al. 2005), we can independently

 evaluate several parameters fitted by IM.

 Goubitz et al. (2004) sampled P. halepensis populations in 10 sites
 across Israel to examine how serotiny (the phenomenon that cones
 remain closed on the canopy, forming a canopy seed bank) depends
 on stand history, tree size and tree density. Among the 60 trees they

 sampled in our study site, 50 trees met the criterion of basal area

 > 20 cm2 we set for the current study. We re-analysed these data to

 examine the relationship between tree density (measured in a radius

 of 10 m around the focal tree) and the following components of tree

 fecundity: (i) the annual seed crop per tree, calculated as the mean

 cone production in the previous 2 years multiplied by 72, the mean

 number of seeds per cone (Nathan et al 1999); (ii) the proportion of

 open cones; and (iii) the mean annual seed rain, which is the product
 of (i) and (ii), and our best estimate for tree fecundity. We standardized

 seed crop and seed rain by the basal area of the focal tree, and used

 linear and generalized linear models (McCullagh & Neider 1989) to
 quantify the relationships of seed crop, proportion of open cones
 and seed rain to tree density.

 The scale and shape parameters of WALD correspond to a set of
 biological and atmospheric parameters (Katul et al. 2005) that can

 be measured independent of IM fitting. Most of these parameters
 were measured at the study site in 1996-98 by Nathan et al (2001).

 However, two points need to be considered when relating these
 independent measurements to IM estimates of WALD parameters:

 (i) the independent measurements did not consider tree density as a

 covariate and thus cannot be used to independently evaluate density
 effects on seed dispersal; (ii) the mechanistic derivation of the

 WALD parameters depends on the mean horizontal wind speed and
 the turbulence experienced by a seed that flies mostly within the
 canopy and beneath the height of release (Katul et al 2005). These
 quantities are most likely overestimated by Nathan etal's (2001)
 wind measurements which were taken at the top of Mount Pithulim,

 outside the main pine stand, and higher (10 m) than the typical flight

 height of seeds in the study site. Hence, we use the data of Nathan

 etal (2001) to derive upper limits for the scale and shape of a
 WALD kernel fitted by a standard IM without environmental
 co vari?tes.

 For WALD's scale parameter u = Uhjvt, hr is the mean height of
 seed release (5.16 m), t/the mean horizontal wind speed experienced
 by moving seeds (assumed to be < 5.46 m s"1, the mean horizontal

 wind speed measured at 10 m height), and vt the mean terminal fall
 velocity of seeds in still air (0.81 m s1). For WALD's shape para
 meter/? = h; UI2k H <5W, H is the mean canopy top (8.5 m), and a?.

 the standard deviation of the vertical wind speed experienced by
 moving seeds (assumed to be < 0.35 m s ', the standard deviation of
 vertical wind speed at 10 m height). The coefficient k is a 'black box'

 entity that is difficult to quantify empirically, but typically varies
 between 0.3 for very dense and 0.4 for very sparse forests (Katul
 et al 2005). Based on independent information, we thus expect that

 a standard IM estimates WALD to have u < 34.6 m, and/? < 81.8 m.

 Results

 COMPARISON OF ALTERNATIVE INVERSE MODELS

 IM analyses detect both source and path effects of local
 tree density on the recruitment of P. halepensis (Table 2). As
 a basis for the exploration of these effects, we first consider

 standard IMs without environmental effects (eqn 1). When
 fitting these standard models with each of the four alternative
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 Table 2. Comparison of alternative inverse models for fecundity and seed dispersal of Pinus halepensis. For the best model in each of four model
 categories (models without environmental effects, with only source or only path effects, with both source and path effects), the table gives the

 dispersal kernel, the included source and path effects, the number of parameters (JVpar), the negative log-likelihood (-In L), the deviance and the
 QAIC

 Best model
 Dispersal
 kernel

 Source effect on
 Path
 effect  AL  -InL  Deviance  QAIC

 Including source and path effects WALD
 Including only source effects WALD
 Including only path effects 2Dt

 Without environmental effects 2Dt

 285.4
 298.4
 336.3
 337.4

 355.2
 381.3
 457.1
 459.2

 87.5
 89.0
 97.0
 95.3

 Table 3. Parameter estimates, number of parameters and QAIC of alternative WALD models describing effects of tree density on fecundity and
 dispersal of Pinus halepensis. Models describe source and/or path effects of tree density and are ordered according to increasing QAIC values.
 The table furthermore gives QAIC weighted averages of model parameters that are based on all models including the respective parameter

 Source effects  Parameter estimatest
 Path
 effect

 ft*  ft 7>i
 Nm  QAIC

 Averaged
 parameters

 2.4
 2.3
 2.3
 2.4
 2.5
 2.4
 2.3
 2.5
 2.6
 2.6
 2.6
 2.3
 2.2
 2.6
 2.2
 2.1
 2.4

 -0.5
 -8.0
 -3.0

 -7.8
 -15.4
 -15.3
 -16.8

 -15.9

 -4.8

 2.3
 2.3
 2.6
 2.3
 2.6
 2.4
 2.6
 2.6
 2.6
 2.7
 2.6
 2.3
 2.7
 2.7
 2.6
 2.7
 2.4

 48.4
 28.1

 48.3

 26.4

 -4.3
 39.3

 -1.8
 7.9

 40.8

 6.1
 5.7
 5.5
 6.1
 5.4
 5.6
 5.5
 5.4
 4.7
 4.8
 4.8
 5.2
 4.4
 4.8
 4.3
 4.6
 5.8

 -91.6
 -98.3
 -89.7
 -91.1
 -86.6
 -95.8
 -88.1
 -85.6

 -91.9

 22.1

 22.2

 2.5
 1.2

 3.5

 20.5

 2.7

 3.2
 18.8

 87.5
 89.0
 89.4
 89.5
 90.2
 90.7
 91.3
 92.2
 94.2
 95.5
 95.7
 95.8
 96.5
 97.4
 97.9
 98.1

 t?oo has units of In [seeds cm 2]; ?M has units of m2/tree In [seeds cm 2], ?MOand ?^o have units of ln[m]; ?Ml and $pl have units of m2/tree ln[m], and
 j8h,, has units of m2/tree.

 dispersal kernels (eqns 3-6), we find that the 2Dt kernel
 provides the best fit (deviance = 459.2, QAIC = 95.3; Table 2),
 whereas the mechanistic WALD kernel performs worst
 (deviance = 468.3, QAIC = 96.5).

 The inclusion of source effects markedly lowers the deviance

 and improves the performance of IMs compared to the standard

 approach (Table 2). In remarkable contrast to the standard
 models, the best source-effect model involves the mechanistic

 WALD kernel and describes source effects on the shape and
 scale of dispersal (Table 2). The addition of a path effect to
 source effect models leads to a further marked decrease in

 model deviance, while the simple inclusion of a path effect
 without source effects did not improve model performance
 (Table 2). The overall best model has a path effect, source
 effects on shape and scale of the WALD kernel, but no source
 effect on fecundity (Table 2). Compared to the best standard
 IM, this model fits the observed seed trap counts better and
 has a more homogenous distribution of residuals (Fig. 3).

 Model bias, measured as the mean difference between model

 prediction and observation, was 15.4 seeds for the best standard

 IM, but only 0.002 seeds for the best IM with source and path
 effects.

 In the full set of 64 models, the WALD kernel performs
 best: the four models with lowest QAIC all involve the WALD
 kernel and a negative source effect on kernel shapep (Table 3).

 The best non-WALD model (a log-normal kernel with a path
 effect and source effects on kernel scale and shape, deviance

 373.4, QAIC 89.9) is clearly inferior to the best WALD model

 (deviance 355.2, QAIC 87.5).

 INVERSE MODELS VS. INDEPENDENT INFORMATION

 Re-analysis of the independent data available from Goubitz
 et al. (2004) reveals a negative effect of tree density on annual
 seed crop (regression for log-transformed seed crop, Fl4S =
 22.7, P < 0.001; Fig. 4a), implying that trees in dense forest
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 Predicted seed number

 0 1 2 5 10 20 50 100

 Predicted seed number

 Fig. 3. Number of Pinus halepensis seeds collected from 2003 to 2006
 in 54 seed traps at Mount Pithulim, Israel, vs. predictions of two
 inverse models, (a) The predictions of the best standard inverse model
 with a 2Dt dispersal kernel, (b) The predictions for the overall best
 model that describes source and path effects on a WALD dispersal
 kernel. Note that observed and predicted seed numbers are plotted on
 a quasi-logarithmic scale (seed number + 1 is plotted logarithmically).
 Lines indicate the 1 : 1 identity.

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

 Tree density (trees irr2)

 ?L. * T . ' * i

 0.01 0.02 0.03 0.04 0.05 0.06 0.07
 Tree density (trees m~2)

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

 Tree density (trees rrf2)

 Fig. 4. The relationship between local tree density in 10-m radius
 circles and fecundity components based on a sample of 50 Pinus
 halepensis trees at Mount Pithulim. Local tree density is (a)
 negatively related to the mean annual seed crop estimated by
 counting the easily distinguishable green (second year) and brown
 (third year) cones in each tree, standardized by the tree basal area, (b)

 positively related to the proportion of open cones, defined as the
 proportion of open brown and grey cones out of all brown and grey
 cones counted in each tree, and (c) negatively related to the mean
 annual seed rain calculated as the product of (a) and (b). The lines in
 (a) and (c) are fits of linear models with log-transformed response
 variables (P < 0.001 and P = 0.05 for tree density effects, respec
 tively); the line in (b) shows the fit of a generalized linear model with
 quasibinomial family (P < 0.001 for the tree density effect). Data are
 obtained from previous work of Goubitz et al (2004).

 produce fewer seeds per unit basal area each year than trees in

 sparser locations. Opposed to this is a positive effect of tree
 density on the proportion of open cones (generalized linear

 model with quasibinomial family, FM8 = 22.9, P< 0.001;
 Fig. 4b), implying that a larger proportion of cones are
 opened (and release seeds) in trees located in denser locations.

 We found that the former effect overrides the latter, so that the
 combined effect - the mean annual seed rain - shows a weak

 negative relationship to tree density (regression for log
 transformed seed rain, FXM = 4.1, P = 0.05; Fig. 4c). This
 implies that trees in dense forest disseminate fewer seeds per
 year per unit basal area than trees in sparser locations. We
 emphasize that this third quantity - clearly the one most

 relevant to seed trap counts - has the weakest relationship to
 tree density (Fig. 4c).

 IM analyses agree with this independent information in
 that they also indicate a weak source effect of tree density on
 fecundity. While such an effect is not included in the best three

 IMs, it is described by several other highly ranked IMs (see
 Table 3 for IMs involving WALD). In agreement with the
 relationship shown in Fig. 4c, all 32 IMs including a source
 effect on fecundity estimate this effect to be negative. More
 over, for all but one of these 32 IMs, this estimate falls within

 the 95% confidence interval of the regression slope depicted in

 Fig. 4c (-24.8 to -0.02 m2/tree In [seeds cm2]).
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 To compare IM estimates of dispersal parameters to
 independent information, we fitted a standard IM with a

 WALD kernel, and generated 999 bootstrap replicates by
 jointly resampling seed traps, their distances to the seed
 sources and the associated seed counts (see Clark et al. 1999a).

 Eight hundred and eighty-five of these replicates (89%)
 resulted in a scale parameter u < 34.6 m that is consistent with

 average biological and atmospheric parameters measured at
 the study site (Nathan etal 2001). Similarly, 817 replicates
 (82%) yielded an estimate of p < 81.8 m, as predicted from
 this independent information.

 SOURCE AND PATH EFFECTS ON SEED DISPERSAL

 As shown in Table 3, the source and path effects on dispersal

 estimated by the best model are very similar to the respective

 parameter estimates obtained by averaging all relevant WALD

 models using QAIC weights (Burnham & Anderson 1998). In
 the following, we thus focus on the parameter estimates of the

 best performing model.
 According to this best model (Table 3), increasing tree density

 at the source increases the scale parameter u and decreases the

 shape parameter p of a WALD kernel. The path effect of tree
 density furthermore acts to increase resistance to dispersal
 (resistance factor w). To assess how well these parameter
 estimates are supported by the data, we generated 999
 bootstrap replicates. For all parameters, the distribution of
 bootstrap estimates has a well-defined mode close to the
 maximum-likelihood estimate (Fig. 5), suggesting that the
 estimated effects are at the least qualitatively robust. Nevertheless,

 overdispersion in seed counts results in these distributions
 being relatively broad. Hence, 0 is just included in the 95%

 confidence intervals for two of the three 'slope parameters'

 (95% confidence intervals: ?Ml: 9.3-127.0 m2/tree ln[m]; $pl:
 -154.7 to 8.2 m2/trees ln[m]; ?wl: -1.5 to 54.3 m2/tree). Inspection
 of the relationship between bootstrap estimates of different
 parameters revealed the expected negative correlation between
 associated intercepts and slopes (Spearman's p was -0.79 for

 ?w0 and ?Ml, and -0.82 for ?p0 and ?^). Apart from this, there
 was no strong correlation between parameter estimates
 (for all other parameter combinations, Spearman's p ranged
 from-0.27 to 0.32), indicating that all parameters are well
 identifiable from the data.

 We used the parameter estimates of the best model to
 explore how source and path effects of tree density affect the
 seed dispersal of P. halepensis. A comparison of kernels
 predicted for trees growing in homogeneous areas of low
 density (0.003 trees m-2) vs. high density (0.03 trees m~2) reveals
 clear differences between these environments: at high tree

 density, the dispersal kernel has a shorter median and a fatter

 tail (Fig. 6a). Comparison of these kernels with the kernel
 predicted by the best model without environmental effects
 furthermore suggests that such standard models provide a
 poor description of dispersal both in areas of low and high
 density (Fig. 6a). Based on the parameter estimates of the
 best model, we systematically explored how predictions for
 different quantiles of dispersal distance vary with tree density

 in spatially homogeneous stands. In this analysis, we find that
 the predicted median dispersal distance is largely constant at
 tree densities between 0 and 0.03 trees m"2 and drops steeply

 thereafter (Fig. 6b). Predictions for higher quantiles of dispersal

 distance show a pronounced unimodal relationship to tree
 density: the 95% quantile, for instance, is predicted to peak at

 around 0.05 trees m~2 (Fig. 6b). Source effects thus cause

 400
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 E" 200-J
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 Fig. 5. Distribution of 999 bootstrapped
 parameter estimates for the selected inverse
 model that includes fecundity parameter ?e0,
 source effects on the shape and scale of a

 WALD dispersal kernel (described by interc
 epts ??o and ?^, and slopes ?Ml and ?^), and a
 path effect (parameter ?wl). The bold lines indicate
 maximum-likelihood parameter estimates.
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 Fig. 6. Source and path effects on the seed dispersal of Pinus halepensis
 as predicted by the selected model, (a) Source effects on seed dispersal
 are apparent from a comparison of WALD dispersal kernels for trees
 growing in homogeneous environments of high tree density
 (0.03 trees m"2; grey line) vs. low tree density (0.003 trees m2; black
 line). For comparison, the hatched line shows the kernel predicted by
 the best standard model without environmental effects (2Dt). The
 insert depicts the tails of the three kernels in a semi-log plot, (b)
 Predicted quantiles of dispersal distance (median, 75% and 95 quantile)
 in environments of different homogeneous tree density, (c) Predicted
 path effects on the seed dispersal of a tree that grows in a matrix of
 intermediate tree density (0.01 trees m2). The shaded area either has
 high tree density (0.03 trees m2; black line) or no trees (dark grey line).
 The hatched line shows predictions for dispersal in a homogeneous
 environment (0.01 trees m-2 throughout). Seed densities in (a) and (c)
 are based on the predicted fecundity of a tree with 200 cm2 basal area.

 seeds released from dense stands to have both a short modal

 dispersal distance and a relatively high probability of travelling

 long distances (see Fig. 6a).
 In spatially heterogeneous environments, path effects are

 apparent (Fig. 6c). Note, however, that the above predictions

 10000 h
 Density eifert

 i-1-1-1

 1 23456789 10
 Generation

 Fig. 7. Comparison of population spread resulting from density
 dependent dispersal as predicted by the overall best inverse model
 (black), and from density-independent dispersal as predicted by the
 best standard model (grey). For 99 replicate simulations, the graphs
 indicate the medians (solid lines) and 95% confidence intervals (hatched
 lines) of the distance between the origin of spread and the furthest
 forward individual. Note that distances are plotted on a log-scale.

 for spatially homogenous environments also depend on the
 path effect parameter ?Hl. The estimated value of ?Hl = 22.1 m2/

 tree means that a distance in an area of 0.03 trees m~2 provides
 about twice the resistance to seed movement as the same

 distance in an area without trees (exp(22.1 m2/treex0.03
 trees m~2) ~ 2). Consequently, a dense patch of trees in a

 matrix of intermediate tree density is predicted to intercept a
 substantial amount of seeds and to 'shade' the areas behind it

 (Fig. 6c). On the other hand, a clearing in an area of intermediate

 tree density is predicted to receive fewer seeds, which leads
 to higher seed deposition in the areas behind the clearing
 (Fig. 6c).

 1000

 100

 10

 0.1

 CONSEQUENCES FOR POPULATION SPREAD

 To explore the consequences of source and path effects for
 population spread, we constructed a spatially explicit simu
 lation model of an expanding population with seed dispersal

 given either by the best model with environmental covariates
 (WALD) or by the best standard model (2Dt). For each dispersal

 kernel, we conducted 99 replicate simulations that started
 with a single individual, assumed a constant reproductive rate
 Ro = 3, and followed population spread over 10 generations.
 To keep local density within realistic bounds, we used lottery

 competition to limit the number of individuals co-occurring
 in a 10 x 10 m cell to eight (272 of 281 occupied cells at Mount

 Pithulim contained < 8 trees). As shown in Fig. 7, the inclusion

 of environmental effects has pronounced effects on the
 simulated spread of the population front (measured as the
 location of the furthest forward individual, Clark et al. 2001).

 Source and path effects of local tree density caused the
 population to initially spread more slowly but then expand
 rapidly after a lag-phase of five generations. After 10 genera

 ? 2008 The Authors. Journal compilation ? 2008 British Ecological Society, Journal of Ecology, 96, 628-641

This content downloaded from 132.64.68.94 on Mon, 14 Nov 2016 07:39:53 UTC
All use subject to http://about.jstor.org/terms



 638 F. M. Schurr, O. Steinitz & R. Nathan

 tions, spread predictions of a model with environmental
 effects on dispersal by far exceeded that of a model without
 environmental effects.

 Discussion

 Spatial variation in the environment has pervasive effects on

 plant fecundity and seed dispersal. These effects can be
 partitioned into source effects (which depend on the local
 environment of a seed source) and path effects (which depend

 on the environments encountered along the dispersal path).
 We introduced source and path effects into the established IM
 framework (Ribbens et al. 1994; Clark et al. 1998), which
 enables the estimation of these effects from easily available

 data. Source effects are incorporated by linking the fecundity
 and dispersal parameters of a seed source to its local environ
 ment with functions borrowed from generalized linear models

 (McCullagh & Neider 1989). Path effects are incorporated by

 projecting the physical space around a source onto movement

 space and then evaluating the dispersal kernel in this movement

 space (Fig. 1).
 The introduced method is capable of simultaneously

 estimating path effects on dispersal as well as source effects on

 fecundity and dispersal (Table 1). For the P halepensis 3-year
 data set (Fig. 2), IMs with source and path effects provide a
 better fit and a more parsimonious explanation of seed trap
 data than standard IMs without environmental covariates

 (Fig. 3, Table 2). Parameter estimates conform with independent

 data on fecundity and seed dispersal of P. halepensis at the
 study site (Nathan et al 2001; Goubitz et al 2004), and estimates

 averaged across all WALD models are close to the estimates
 of the best model with lowest QAIC (Table 3). Despite
 considerable variation in seed trap data that even the best model

 cannot explain, bootstrap resampling shows that the parameter

 estimates of the selected model are reasonably well defined
 (Fig. 5) and that all parameters are identifiable from the data.

 The unexplained variation may be due to random effects
 which can be estimated by fitting IMs in a Hierarchical
 Bayesian framework (Clark et al. 2004). It should be noted,
 however, that the fixed source and path effects considered
 here explain a considerable amount of variation that would
 be attributed to random effects in a standard IM approach.

 We nevertheless emphasize that the likelihood formulation
 of the presented models enables their incorporation into a
 Hierarchical Bayesian framework, so that fixed and random
 effects can be estimated simultaneously, if deemed necessary.
 The focus of the present study is, however, on the fixed
 effects of environmental covariates. In the following, we will

 thus examine how the consideration of local tree density
 improves our understanding of fecundity and seed dispersal
 in P. halepensis.

 EFFECTS OF TREE DENSITY ON FECUNDITY AND
 DISPERSAL OF PINUS HALEPENSIS

 Local tree density in the study population is negatively related

 to seed production (Fig. 4a) and positively related to the

 proportion of open cones (Fig. 4b). Consequently, trees in
 sparser locations produce more seeds - presumably because
 of weaker intraspecific competition - but retain a larger
 proportion of them in closed serotinous cones on the canopy,

 reflecting a general tendency also observed in other P. halepensis

 stands in Israel (Goubitz et al 2004). The mean annual seed
 rain, which combines these two opposing effects, shows a
 weak negative relation to local tree density (Fig. 4c). Overall,

 the IM analysis also suggests a weak negative effect of local
 tree density on fecundity in the study population. On the one

 hand, the relationship between seed production and basal
 area of a tree is independent of the number of neighbouring
 trees in the three best IMs (Table 3). On the other hand, all

 models that include a source effect of tree density on fecun
 dity, estimate the associated parameter to be negative (see
 Table 3 for IMs involving the WALD kernel).

 The seed dispersal of P. halepensis seems to be more
 strongly affected by tree density than its fecundity (Table 3).

 Importantly, the inclusion of tree density as an environmental

 covariate changes the relative performance of alternative
 dispersal kernels: while the 2Dt kernel performs best in
 standard IMs, the mechanistic WALD kernel is clearly the
 best kernel when source and path effects of tree density are

 included (Tables 2 and 3). Interestingly, the 2Dt kernel has an
 interpretation as a continuous mixture of Gaussian kernels
 arising from random variation in the dispersal conditions
 experienced by individual seeds (Clark et al 1999a). The 2Dt
 kernel may be successful in standard IMs for P. halepensis,
 because it attributes variation in seed dispersal that results
 from systematic variation between different environments to
 random variation between individual seeds.

 To our knowledge, this study is the first to use the WALD

 kernel - an analytical version of a mechanistic model for wind

 dispersal - in an IM framework. The WALD kernel performs
 well for the wind-dispersed P. halepensis (Tables 2 and 3), and
 WALD parameter estimates of a standard IM are consistent
 with average atmospheric and biological quantities measured
 at the study site (Nathan et al. 2001). While previous studies
 (Katul et al. 2005; Skarpaas & Shea 2007) have shown the
 benefits of using WALD as a mechanistic analytical wind
 dispersal model parameterized independently of observed
 dispersal data, our study suggests that this kernel should
 also be used more widely in IM studies of species with
 predominantly wind-dispersed seeds. However, this study
 also shows that the superior performance of the WALD
 kernel may only be visible once environmental effects on
 dispersal are included. An advantage of mechanistic dispersal

 kernels over phenomenological kernels is that their
 parameters can be interpreted in terms of the processes
 driving dispersal. In the following, we will thus interpret
 the estimated environmental effects on dispersal in terms of

 underlying mechanisms.
 According to the best WALD model (Table 3), increasing

 tree density at the source leads to stronger skewness of the
 two-dimensional dispersal kernel (Fig. 6a,b) and causes
 divergence between the median and the mean of predicted
 dispersal distances. Source and path effects interact in this
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 model to the effect that starting in an area of high tree density

 increases mean dispersal distance (Fig. 6a,b), whereas mov
 ing through an area of high tree density decreases dispersal dis

 tance (Fig. 6c).
 The estimated increase of WALD's mean seed dispersal

 distance u with tree density could result from an increase in

 the release height of seeds, an increase in the horizontal wind

 speed they experience, or a decrease in their terminal velocity

 (Katul et al. 2005). Amongst these potential mechanisms,
 it seems most likely that release height increases with tree
 density because trees in dense stands may be taller and/or
 have their cones concentrated towards the canopy top. Since
 horizontal winds speed up with height above the ground
 surface (Monteith & Unsworth 1990), an increase in release
 height might furthermore increase the horizontal wind velocity

 experienced by seeds, even if the ambient wind velocity at a

 reference height decreases with tree density. The estimated
 decrease of WALD's shape parameter/? with tree density (and

 the associated increase of the variance of dispersal distance
 u3/p) could theoretically result from a decrease in release
 height or mean wind velocity experienced by seeds, or from
 increases in canopy height or turbulence (Katul et al. 2005).

 Amongst these potential mechanisms, an increase in canopy
 height and turbulence seems the most likely explanation for
 the source effect of tree density on kernel shape.

 The finding that seeds released from a dense forest have a

 longer mean dispersal distance compared to seeds released
 from a sparse forest apparently contradicts the conclusions of

 Nathan & Katul (2005) of higher frequency and magnitude of
 LDD for seeds released from sparse vs. dense canopies. In
 fact, there is no real contradiction here: Nathan & Katul

 (2005) assumed release height to be independent of canopy
 density, whereas release height is likely to increase with
 density at our study site as trees in dense stands tend to be
 taller and have their cones concentrated towards the canopy

 top (O. Steinitz, personal observation). Moreover, Nathan &
 Katul (2005) specifically studied the uplifting of seeds above
 the canopy, a process acting at low frequencies (3% at most,
 usually much lower) and over large spatial scales (hundreds of
 metres) for which seed trap data are unlikely to contain much
 information.

 The strong path effects detected by the IM approach cor
 respond well with the wind regimes described by Nathan &
 Katul (2005) for sparse and dense canopies, and with their
 likely effect on the flight of non-uplifted seeds. Dense canopies

 slow down the movement of non-uplifted seeds by lowering
 the horizontal wind velocity within the canopy (Monteith
 & Unsworth 1990; Nathan & Katul 2005). When moving
 through high density areas, these seeds may additionally be
 intercepted by trees (Greene et al 2004; Pounden et al. 2008).

 Both of these effects make areas of high tree density less
 permeable for moving seeds, as estimated by all WALD
 models including path effects (Table 3). Clearly, the estimated
 source and path effects of tree density do not permit direct

 conclusions about the underlying mechanisms. However, they

 allow us to formulate hypotheses that can be tested by measuring
 seed release heights and wind conditions in areas of different

 tree density. Such measurements are currently underway at
 the study site.

 Source and path effects of tree density affect not only
 seed dispersal, but can also qualitatively alter the dynamics of

 population spread (Fig. 7). When comparing spread predictions

 of the best density-dependent dispersal model (WALD) with
 predictions of the best standard model (2Dt), we find that the

 WALD model exhibits a lag-phase behaviour with initial slow
 spread being followed by a rapid advance of the population
 front (Fig. 7). This can be explained by the fact that the density

 dependent dispersal model predicts a lower LDD probability
 if tree density at the source is low (Fig. 6a,b). As tree density

 builds up in the core of the population, the seeds produced in
 core cells have an increasing probability of LDD. This causes
 the population to expand rapidly after a lag-phase of several

 generations. Hence, density-dependent dispersal may contribute

 to the time-lag often observed in the spread of exotic organisms

 (Hastings et al 2005). This consequence of density-dependent
 dispersal has not yet been acknowledged, whereas it is well

 known that Allee effects (an effect of density on fecundity)
 can markedly alter rates of population spread (Kot et al.
 1996). To predict population spread, it thus is necessary to
 test for density effects on both fecundity and dispersal.

 GENERALIZATION OF THE PRESENTED METHOD

 In this study, we have applied IMs with environmental
 covariates to the specific example of P. halepensis. However,

 the presented framework can easily be used to quantify environ

 mental effects on fecundity and dispersal in a wide range of
 other systems. In part, this is because the toolbox of linear
 predictors and link functions which we borrowed from
 Generalized Linear Models (GLMs, McCullagh & Neider
 1989) provides an extremely flexible description of source and

 path effects: (i) Submodels for source and path effects can
 describe the action of one or several environmental variables

 that may be continuous (as in this study) or categorical (e.g.
 habitat type), (ii) Different sets of environmental variables
 can be used to model different source and path effects, (iii)
 Quadratic terms for environmental variables can be added to

 describe, for instance, intraspecific facilitation of fecundity at

 low densities and intraspecific competition at high densities,
 (iv) Alternative link functions can be used to describe how

 the environment affects fecundity and dispersal parameters.
 Despite its flexibility, however, the GLM toolbox is not the
 only way of describing source and path effects. Alternatively,
 these effects can be modelled based on mechanistic con

 siderations (e.g. of how vegetation alters mean wind speed
 and turbulence; Bohrer et al. 2008). Moreover, the formula
 tion of path effects can easily be extended to cases where seed

 permeability depends on the direction of movement. For
 instance, the effect of topography on wind dispersal or the

 effect of water currents on hydrochory can be described by
 shortening movement space downslopes or downstream.
 Clearly, most of these possible extensions come at the cost of

 increased model complexity, and model selection is necessary
 to avoid overfitting.
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 The presented framework is thus flexible both with respect
 to the nature of environmental covariates and with respect

 to their functional link to fecundity and dispersal. This
 flexibility means that IMs with environmental covariates can

 be used as a simple yet powerful exploration tool into the
 mechanisms underlying fecundity and dispersal. The mech
 anistic flavour of the presented approach also facilitates
 comparisons of IM parameter estimates with independent
 empirical data, a confidence-building practice that, to our
 knowledge, is applied here for the first time. These merits
 imply that the framework can be tested and applied to a wide

 range of environmental effects on fecundity and dispersal.
 Furthermore, the general description of source and path
 effects is not limited to species dispersed by primary wind
 dispersal (such as P. halepensis), but can also be used for
 species with seeds dispersed by secondary wind dispersal
 (Schurr et al. 2005), animals (e.g. Spiegel & Nathan 2007) or

 water (Merritt & Wohl 2002). Finally, source and path effects

 may also prove useful for examining environmental effects on

 pollen dispersal (e.g. Steffan-Dewenter et al. 2001; Klein
 et al. 2003).

 Application of the presented method to a broader range
 of study systems will show whether the incorporation of
 environmental covariates can help detect commonalities in
 fecundity and dispersal across environments and species.
 Currently, the potential for such generalizations across envi
 ronments and species seems limited (Clark etal 1999b, 2005;

 Muller-Landau et al 2008). Through the explicit consideration
 of source and path effects, it becomes possible to test (i)
 whether populations of the same species occurring in different

 environments show similar environmental effects on fecundity

 and dispersal as well as similar movement space kernels; and (ii)

 whether species with similar traits respond to environmental
 variation in a similar way and have similar movement space
 kernels.

 THE CONCEPT OF MOVEMENT SPACE

 Conceptually, movement space may be regarded as a rep
 resentation of the energetic costs involved in the movement of

 individuals through a spatially heterogeneous environment.
 While source effects determine the potential energy initially
 available for reproduction and dispersal, path effects represent

 the loss of energy during movement. In this general formula
 tion, the concept of movement space may prove useful not

 only for quantifying the dispersal of seeds and pollen, but also

 for studying the movement of mobile organisms such as
 animals. This is because movement space quantifies how local
 environmental conditions alter the scale at which a moving

 organism perceives distance. It thus fits into the broader
 concept of Levin (1992), according to which each organism
 observes the environment and its variability at specific scales.

 By measuring space in units relevant to the moving organism,
 the concept of 'movement space' may facilitate generalizations
 of movement patterns across environments and taxa. This may

 in turn contribute to the development of a general 'movement

 ecology' (Holden 2006).

 Conclusions

 We have formulated and tested a method for modelling and
 estimating environmental effects on plant fecundity and seed
 dispersal. This method can be widely used to study the effects

 of environmental heterogeneity on fecundity and dispersal,
 and its results have consequences for predictions of population

 spread. The concept of movement space introduced here may

 furthermore enhance a unified understanding of how various
 kinds of organisms move through spatially heterogeneous
 environments.
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