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Abstract
1.	 Large	animals	provide	crucial	seed	dispersal	services,	yet	face	continued	threats	
and	are	susceptible	to	changes	in	landscape	composition	and	configuration.	Thus,	
there	is	a	growing	imperative	to	improve	understanding	of	animal‐generated	seed	
dispersal	using	models	that	incorporate	spatial	complexity	in	a	realistic,	yet	tracta-
ble,	way.

2.	 We	developed	a	spatially	explicit	agent‐based	seed	dispersal	model,	with	disperser	
movements	informed	by	biotelemetry	data,	to	evaluate	how	landscape	composi-
tion	and	configuration	affect	seed	dispersal	patterns.	We	illustrated	this	approach	
for	the	world's	second	largest	ratite,	the	emu	(Dromaius novaehollandiae),	a	highly	
mobile	generalist	 frugivore	considered	an	 important	 long‐distance	disperser	for	
many	plant	species	across	Australia.

3.	 When	 animal	movement	 is	 unrestricted,	model	 parameters	 related	 to	 seed	 gut	
passage	 largely	 determine	 seed	dispersal	 kernels.	However,	 as	 habitat	 loss	 and	
fragmentation	 increase,	 the	extent	of	 long‐distance	dispersal	events	 is	 reduced	
and	seed	shadows	became	progressively	more	aggregated.	This	effect	is	due	to	
the	emu	not	being	able	to	move	between	disconnected	parts	of	the	 landscape,	
with	small	changes	in	habitat	structure	causing	decreased	long‐distance	dispersal.

4.	 We	simulated	seed	dispersal	patterns	generated	by	three	commonly	used	generic	
models	of	animal	movement	–	unbiased	and	biased	correlated	random	walks	and	
Lévy	walks	–	to	evaluate	how	different	representations	of	movement	affect	es-
timations	of	animal	movements	and	emergent	seed	dispersal	patterns.	Simulated	
movements	 informed	 by	 the	 emu	 biotelemetry	 data	 resulted	 in	 longer	median	
seed	dispersal	distances	than	do	the	three	generic	models.

5. Synthesis.	Changes	in	 landscape	composition	and	configuration	can	dramatically	
alter	patterns	of	zoochorous	seed	dispersal	as	they	influence	animal	movement.	
However,	when	models	are	used	to	simulate	the	patterns	of	seed	dispersal,	deci-
sions	about	how	animal	movement	 is	represented	also	affect	estimates	of	seed	
dispersal.
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1  | INTRODUC TION

Dispersal	 is	the	primary	movement	process	during	the	plant	life	
cycle,	 leading	 to	 the	 establishment	 of	 next‐generation	 individ-
uals	 both	 near	 to	 and	 far	 away	 from	 their	 parents	 (Nathan	 &	
Muller‐Landau,	 2000).	 Long‐distance	 dispersal,	 in	 which	 seeds	
are	 transported	 great	 distances	 from	 the	 parent	 plant	 in	 single	
infrequent	 events,	 substantially	 affects	 ecosystem	 dynamics,	
particularly	with	regard	to	plant	invasions	and	range	expansions	
under	 climate	 change	 (Nathan,	 2006;	 Trakhtenbrot,	 Nathan,	
Perry,	&	Richardson,	2005).	However,	their	rarity	makes	the	fre-
quency	and	extent	of	such	events	difficult	 to	quantify	 (Nathan,	
Perry,	 Cronin,	 Strand,	 &	 Cain,	 2003;	 Robledo‐Arnuncio,	 Klein,	
Muller‐Landau,	&	Santamaría,	2014),	even	if	recent	statistical	ad-
vances	provide	promising	avenues	for	their	estimation	(García	&	
Borda‐de‐Água,	 2017).	 Seed	 dispersal	 is	 inherently	 spatial,	 and	
its	 fundamental	 descriptor	 is	 the	 dispersal	 distance	 from	 the	
source	 (mother)	 plant	 to	 the	 establishment	 site.	 The	 dispersal	
kernel,	 a	 statistical	 description	 of	 the	 distribution	 of	 dispersal	
distances,	quantitatively	summarizes	seed	dispersal	and	portrays	
the	probability	of	a	seed	dispersal	event	ending	at	a	certain	dis-
tance	relative	to	the	source	point	(see	box	15.1	in	Nathan,	Klein,	
Robledo‐Arnuncio,	&	Revilla,	2012	for	clarifications	of	terminol-
ogy	 and	 formulations).	 The	most	 general	mechanistic	model	 of	
seed	dispersal	 requires	quantifying:	 (a)	 seed	uptake	by	 the	vec-
tor,	(b)	the	displacement	velocity	of	the	vector	while	transporting	
seeds	and	 (c)	 the	 seed	passage	 time	 (gut	 retention	 time)	during	
this	transportation	(Nathan,	Schurr,	et	al.,	2008).	For	zoochorous	
seed	 dispersal,	 components	 of	 animal	 space	 use	 such	 as	 terri-
tory	and/or	home	range	size	are	also	important	(Côrtes	&	Uriarte,	
2013).	However,	these	factors	(co)vary	across	space	and	time	in	
ways	 that	 are	 not	 predictable	 simply	 as	 a	 function	 of	 distance	
from	the	source	plant.	As	a	 result,	 a	 simple	mechanistic	disper-
sal	kernel	approach	derived	from	a	single	spatial	context	cannot	
adequately	represent	the	complexity	and	variability	of	seed	dis-
persal	(Kremer	et	al.,	2012;	Nathan	et	al.,	2012).	Seeds	dispersed	
by	 frugivores	 tend	 to	 travel	 short	distances,	but	with	 relatively	
high	variance	and	clumping	compared	to	wind‐generated	kernels	
(Clark,	 Poulsen,	 Bolker,	 Connor,	 &	 Parker,	 2005).	 However,	 the	
seed	 dispersal	 patterns	 generated	 by	 frugivores	 emerge	 from	
animal	movement	 and	 behaviour	 controlled	 by	 internal	 and	 ex-
ternal	factors	that	vary	across	multiple	spatial	scales,	which	are	
not	 adequately	 described	 by	 simple	 dispersal	 kernels	 (Schupp,	
Milleron,	 &	 Russo,	 2002).	 This	 spatial	 complexity	 arises	 from	
frugivore–plant,	frugivore–environment	and	frugivore–frugivore	
interactions,	such	as	obstacles	to	movement	and	sites	of	differ-
ing	attractiveness	affecting	movement	speed	and	direction	and,	
ultimately,	 the	 location	 of	 seed	 deposition	 sites	 (Schupp	 et	 al.,	
2002).

The	 spatial	 complexity	 of	 seed	 dispersal	 patterns	 has	 moti-
vated	 the	 development	 of	 new	methods	 of	 data	 analysis	 to	 char-
acterize	 the	patterns	 of	 seed	dispersal	 (Lavabre,	 Stouffer,	 Sanz,	&	
Bascompte,	 2014;	 Nathan	 et	 al.,	 2012;	 Robledo‐Arnuncio	 et	 al.,	
2014).	Habitat	loss	and	fragmentation	directly	impact	animal	move-
ment	(Tucker	et	al.,	2018),	with	significant	negative	flow‐on	effects	
for	seed	dispersal,	including	a	reduction	in	seed	dispersal	distances	
(Jones,	Duke‐Sylvester,	Leberg,	&	Johnson,	2017)	and	altered	seed	
rain	 composition	 (McConkey	 et	 al.,	 2012).	 Habitat	 fragmentation	
can	result	 in	animals	being	unable	to	move	between	disconnected	
patches	of	habitat,	with	these	difficulties	increasing	with	the	size	of	
the	organism	(Bovo	et	al.,	2018;	McKinney,	1997).	Large	frugivores	
are	often	key	actors	in	plant–seed	interaction	networks	(Pigot	et	al.,	
2016),	and	can	disperse	many	seeds	in	a	single	event,	making	their	
role	difficult	to	replace	(Jordano,	Garcia,	Godoy,	&	Garcia‐Castano,	
2007;	Ripple	et	al.,	2015).

Predicting	 how	 frugivore	 response	 to	 changing	 landscape	
structure	 (composition	 and	 configuration)	 might	 alter	 seed	 dis-
persal	 patterns	 requires	 tools	 that	 capture	 the	 feedbacks	 be-
tween	 frugivore	movement,	 resource	 availability	 and	 landscape	
structure	(Côrtes	&	Uriarte,	2013;	Pegman,	Perry,	&	Clout,	2017).	
Schupp,	Jordano,	and	Gómez	(2010)	highlight	the	need	to	develop	
spatially	explicit	methods	to	understand	the	patterns	of	seed	dis-
persal	 in	 heterogeneous	 landscapes.	 For	 example,	Morales	 and	
Carlo	 (2006)	 demonstrate	 that	 the	 scale	 (e.g.	 mean)	 and	 shape	
(e.g.	‘tailedness’)	of	seed	dispersal	kernels	are	influenced	by	plant	
spatial	 pattern	 and	 frugivore	density.	Carlo	 and	Morales	 (2008)	
show	that	spatial	structure	in	plant	populations	can	impact	seed	
dispersal	 by	 generating	 and	 amplifying	 local	 variations	 in	 seed	
removal	rates,	with	seed	dispersal	distances	reduced	in	spatially	
aggregated	 stands.	 Studies	 linking	 animal	 behaviour	 with	 land-
scape	 heterogeneity	 to	 predict	 the	 emergent	 patterns	 of	 seed	
dispersal	generally	suggest	that	landscape	heterogeneity	reduces	
dispersal	distances	and	increases	seed	deposition	aggregation	as	
frugivores	 are	 held	 in	 a	 suitable	 habitat	 patch	 sufficiently	 long	
to	deposit	 locally	sourced	material	 (Levey,	Tewksbury,	&	Bolker,	
2008;	Pegman	et	al.,	2017;	Russo,	Portnoy,	&	Augspurger,	2006).	
Several	studies	have	used	GPS	tracking	to	simulate	spatially	ex-
plicit	 seed	 shadows	 generated	 by	 fruit	 bats	 (Lenz	 et	 al.,	 2011;	
Oleksy,	 Giuggioli,	 McKetterick,	 Racey,	 &	 Jones,	 2017;	 Tsoar,	
Shohami,	&	Nathan,	2010),	but	did	not	thoroughly	investigate	the	
underlying	 mechanisms.	 More	 recently,	 Bialozyt,	 Flinkerbusch,	
Niggemann,	 and	 Heymann	 (2014)	 illustrated	 how	 incorporating	
standard	GPS	and	behavioural	data	 into	spatially	explicit	 agent‐
based	models	can	 improve	understanding	of	how	seed	shadows	
emerge	from	frugivore	(primate)	activity.

Here,	we	present	an	agent‐based	model	to	elucidate	the	effects	
of	 landscape	spatial	heterogeneity	on	patterns	of	seed	dispersal	
for	seeds	dispersed	by	the	emu	(Dromaius novaehollandiae).	Emus	
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are	 the	world’s	 second	 largest	 ratite	 (up	 to	60	kg	mass)	 and	are	
the	primary	dispersal	agent	and	long‐distance	dispersal	vector	for	
many	plant	species	in	the	Australian	landscape	(Calviño‐Cancela,	
Dunn,	Etten,	&	Lamont,	2006;	Davies,	1978;	Dunstan,	Florentine,	
Calviño‐Cancela,	Westbrooke,	&	Palmer,	2013).	The	emu	breed-
ing	season	is	from	late	autumn	to	spring	(the	wet	season),	mature	
males	 tend	 the	 eggs	 and	 their	 mobility	 may	 be	 reduced	 during	
these	periods.	Emus	may	deposit	many	large	seeds	(e.g.	members	
of	the	Ericaceae	and	Podocarpaceae)	in	a	single	event,	with	Nield	
(2014)	 describing	 15	 Leucopogon nutans	 (Ericaceae)	 seedlings	
emerging	from	a	single	scat.	Furthermore,	their	long	gut	passage	
time	 (>100	days	 in	 some	 instances;	Davies,	 1978)	 and	extended	
movements	(from	tens	to	hundreds	of	kilometres	over	time‐scales	
of	weeks	 to	months;	Davies,	2002)	make	emu	a	good	candidate	
for	 examining	 the	 impact	of	 spatially	 explicit	 processes	on	 seed	
dispersal.

The	 relatively	 recent	and	 rapid	habit	 loss	and	 fragmentation	
that	 has	 occurred	 across	 the	 Australian	 landscape,	 with	 some	
areas	losing	more	than	90%	of	native	vegetation	cover	in	the	last	
120	years	(Saunders,	Hobbs,	&	Margules,	1991),	provides	an	ex-
cellent	 context	 for	 investigating	 changing	 landscape	 structure	
and	frugivore	behaviour	on	seed	dispersal.	We	represent	habitat	
loss	by	including	impassable	habitat	in	the	landscape	and	habitat	
fragmentation	by	altering	 the	 size	 (which	equates	 to	habitat	 vs.	
non‐habitat	edges)	of	the	impassable	habitat	patches	(Figure	S3).	
This	approach	allows	us	to	manipulate	 independently	these	two	
components	of	 landscape	structure.	We	 illustrate	 the	 impact	of	
the	 spatial	 structure	 of	 the	 landscape	 on	 dispersal	 kernels	 and	
seed	shadows	produced	by	dispersers	whose	movement	is	repre-
sented	by	different	widely	used	phenomenological	models:	a	cor-
related	random	walk	(diffusive),	a	biased	correlated	random	walk	
(advective‐diffusive)	 and	 a	 Lévy	walk	 (super‐diffusive)	 (Codling,	
Plank,	&	Benhamou,	2008).	Finally,	we	compare	these	three	phe-
nomenological	models	with	 a	 fourth	model	 derived	 from	biote-
lemetry	 information	 for	 the	 emu.	 Using	 our	model,	 we	 address	
the	following:

1.	 How	do	changes	in	the	probability	distribution	and	parameteriza-
tion	used	 for	 gut	 passage	 time	 affect	 the	 seed	dispersal	 kernel	
that	 emerges	 from	 the	 biotelemetry‐informed	 emu	 movement	
model	 in	 landscapes	 without	 habitat	 loss	 or	 fragmentation?

2.	 How	do	the	extent	(composition)	and	spatial	pattern	(configura-
tion)	of	habitat	loss	in	the	landscape	affect	the	seed	dispersal	ker-
nel	emerging	from	the	emu	movement	model?

3.	 Do	changes	 in	 landscape	 structure	 (composition	and	configura-
tion)	affect	seed	dispersal	kernels	for	generic	random	walk	models	
in	the	same	way	as	they	do	the	emu	movement	model?

The	first	 two	questions	are	concerned	with	 the	primary	controls	on	
emergent	patterns	of	seed	dispersal	in	spatially	homogeneous	and	het-
erogeneous	landscapes,	and	the	third	with	how	decisions	about	repre-
senting	movement	in	agent‐based	models	affect	the	inferences	made	
from	them	about	seed	dispersal	processes.

2  | MATERIAL S AND METHODS

2.1 | Emu GPS data collection

We	used	data	collected	using	GPS	biotelemetry	to	develop	the	emu	
movement	model;	 the	 description	 here	 summarizes	 the	 information	
in	Nield,	Enright,	and	Ladd	(2015).	Emus	were	released	into	the	Avon	
Valley	National	Park	(31.63°S,	116.19°E)	c.	50	km	north‐east	of	Perth,	
Western	Australia.	 The	Avon	Valley	 lies	 at	 the	 northern	 end	 of	 the	
Darling	Scarp	on	the	transition	between	the	northern	extent	of	jarrah	
forest	(Eucalyptus marginata)	and	the	drier	wandoo	forest	(E.  wandoo).	
The	Avon	Valley	has	a	Mediterranean‐type	climate,	receiving	a	mean	
annual	rainfall	of	816	mm,	largely	confined	to	the	winter	months	(June–
August;	 Lower	Chittering	meteorological	 station,	 31.61°S,	 116.11°E;	
Bureau	of	Meteorology,	BOM,	2014).

We	characterized	emu	activity	by	tracking	the	movements	of	 in-
dividual	birds	using	GPS	(described	 in	detail	by	Nield	et	al.,	2015).	 It	
was	not	feasible	to	capture	wild	birds	in	jarrah	forest	for	GPS	tracking	
owing	to	their	elusive	behaviours,	speed	and	resistance	to	anaesthet-
ics	(Dr.	T.	Oldfield,	personal	communication,	August	17,	2011).	Young	
birds	(pre‐reproductive)	were	sourced	from	the	Clackline	Free	Range	
Emu	 Farm	 near	 Toodyay,	 Western	 Australia.	 Captive‐reared	 ratites	
use	habitat	in	the	same	manner	as	their	wild‐born	counterparts	(Bellis,	
Martella,	&	Navarro,	2004).	GPS	tracking	devices	were	custom‐made	
by	Telemetry	Solutions,	following	a	design	used	on	another	large	ratite,	
the	Southern	Cassowary	(Casuarius casuarius;	Campbell	et	al.,	2012).	
The	 total	weight	of	 the	GPS	 tracking	unit	 and	 attachment	 cuff	was	
310	g,	<1%	of	the	weight	of	the	birds	used	in	the	study.	Males	on	aver-
age	weigh	31.5	kg	and	females	36.9	kg	(Davies,	2002).	During	March	
2013,	five	birds	were	selected	from	the	young	(1‐year‐old)	cohort	at	
the	Clackline	Free	Range	Emu	Farm,	tagged	and	released	into	the	Avon	
Valley	National	 Park	 area	 in	 southwestern	Australia.	 Five	 birds	was	
the	most	individuals	that	could	be	handled	logistically	(cost	and	effort	
considerations)	and	in	relation	to	animal	ethics	approval	(risk	of	animal	
death	or	other	adverse	impacts).	Individuals	were	not	sexed	at	the	time	
of	GPS	attachment	to	minimize	the	time	taken	to	physically	restrain	
and	tag	the	birds.	The	GPS	download	schedule	varied	from	short	inter-
vals	(data	collected	every	15	min)	to	long	intervals	(data	collected	every	
hour)	as	a	trade‐off	between	resolution	of	movement	information	and	
battery	conservation.	GPS	data	were	collected	for	18–48	days,	from	
the	end	of	March	to	May	2013,	yielding	a	total	of	2,130	data	points	
(Nield	 et	 al.,	 2015).	 One	 GPS	 device	 detached	 from	 the	 emu	 after	
18	days;	hence,	the	range	of	periods	covered	by	the	movement	data.	
Nield	et	al.,	2015	observed	individual	emus	moving	up	to	8	km	from	
the	point	of	release	during	a	1‐week	period.	Because	these	movement	
data	were	collected	 in	a	fragmented	 landscape,	they	may	underesti-
mate	movement	distances	in	more	uniform	landscapes.

2.2 | Emu trajectory analysis

We	 used	 the	 adehabitatLt	 package	 (Calenge,	 2006)	 in	 r version 
2.15.2	(R‐Development‐Core‐Team,	2018)	to	examine	the	param-
eters	 of	 the	 trajectories	 for	 each	 of	 the	 tagged	 birds.	 The	 emu	
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relocation	 step	 length	 and	 turning	 angle	 data	 were	 analysed	 at	
hourly	intervals.	We	used	an	autocorrelation	function	to	examine	
potential	correlations	between	step	 length	and	turning	angles.	A	
permutation	approach	(following	Dray,	Royer‐Carenzi,	&	Calenge,	
2010)	was	used	to	examine	autocorrelation	in	step	lengths,	up	to	
a	lag	of	6	hr.	We	used	a	similar	permutation	procedure	to	examine	
autocorrelation	in	turning	angles,	with	the	chord	distance	(i.e.	net	
displacement	 rather	 than	 total	 distance	 travelled)	 between	 suc-
cessive	 relocations	examined.	The	chord	distances	 are	expected	
to	 be	 low	 when	 successive	 turning	 angles	 are	 similar	 (Calenge,	
2006;	Dray	et	al.,	2010).	For	both	step	length	and	turning	angles,	
correlograms	were	generated	from	the	permutations	to	check	for	
any	potential	significant	correlations.	Potential	autocorrelations	in	
missing	values	were	examined	with	a	runs	test	using	999	replica-
tions	(Calenge,	2006).	A	log‐normal	distribution	was	fitted	to	the	
hourly	 interval	 step	 length	 emu	data	 using	 the	 fitdistrpLus	 pack-
age	 in	r	 (Delignette‐Muller	&	Dutang,	2015).	The	distribution	of	
step	 length	 data	was	 selected	 based	 on	 the	 Akaike	 information	
criterion	values	comparing	other	distributions	as	well	(log‐normal,	
gamma,	Poisson	and	exponential).

2.3 | Simulation model description

The	 description	 here	 is	 an	 abbreviated	 version	 of	 the	 full	 model	
description	 according	 to	 the	 Overview,	 Design	 concepts,	 Details	
protocol	 (Grimm	et	al.,	2010),	which	can	be	found	in	Appendix	S1.	

The	 agent‐based	model	 was	 implemented	 in	 the	 NetLogo	model-
ling	 environment	 version	 6.04	 (Wilensky,	 1999),	 with	 simulations	
hosted	 in	 r	 version	3.4.4	 (R‐Development‐Core‐Team,	2018)	using	
the	rNetLogo	package	v	1.0–4	(Thiele,	Kurth,	&	Grimm,	2012).

Simulations	were	run	on	a	toroidally	wrapped	lattice	of	200	×	200	
cells,	with	each	cell	representing	an	area	of	50	×	50	m	(total	extent:	
10.0	×	10.0	km);	the	size	of	the	grid	did	not	affect	model	outcomes	
(Figure	 S5).	 Although	 the	 grid	 is	 toroidally	wrapped,	we	 track	 the	
location	of	the	emu	and	seed	deposition	using	non‐wrapped	coordi-
nates	(i.e.	if	the	agent	moves	from	the	right	to	the	left	side	of	the	grid,	
then	the	grid	x	co‐ordinate	changes	from	200	to	1,	but	we	keep	track	
that	the	agent	is	at	x	co‐ordinate	201	in	‘true’	Cartesian	space;	Figure	
S1).	Each	grid	cell	 is	classified	as	containing	plants	with	seeds	that	
the	simulated	frugivore	can	consume,	is	empty,	or	impassable.	The	
proportion	of	the	grid	consisting	of	each	cell	type	is	defined	during	
the	model	 initialization	process	(Table	1)	and	according	to	baseline	
parameters	(Table	2).	Cells	containing	plants	followed	a	random	spa-
tial	pattern.	Where	there	was	habitat	loss	(i.e.	impassable	habitat	in	
the	landscape),	 its	spatial	structure	was	represented	by	its	amount	
(‘habitat	loss’)	and	spatial	configuration	(‘fragmentation’).

The	model’s	temporal	extent	is	a	single	fruiting	season	for	a	ge-
neric	plant	species	at	a	temporal	grain	of	1	hr	for	1,000	hr,	during	
which	time	a	single	agent	traverses	the	model	landscape	according	
to	 simple	decision	 rules	 (Figure	S2).	This	 temporal	extent	means	
that	plant	phenology	and	associated	emu	movements	are	not	rep-
resented,	 although	we	 acknowledge	 their	 potential	 role	 in	 seed	

TA B L E  1  Processes,	scheduling,	pseudocode	and	parameters	of	the	simulation	model

Process Decision description Parameters

Model	initialization

Sprout	plants Ask	n‐plant‐grid‐cells	of	total	world	grid	cells	to	become	a	plant	grid	cell n‐plant‐grid cells	(λgrid	cells)

Create	landscape	
structure

Seed	the	grid	with	one	initial	impassable	grid	cell.  

Sequentially	fill	the	landscape	by	selecting	grid	cells	and	making	them	impassable.  

Generate	a	random	uniform	deviate	U(0,1)	and	if	it	is	less	than	attract‐suitable	then	
one	randomly	selected	passable	patch	that	is	immediately	adjacent	to	an	impass-
able	patch	is	tagged	impassable

attract‐suitable, P(impassable)

Continue	this	process	until	the	desired	proportion	of	impassable	habitat	cells,	
P(impassable),	is	met

 

Create	dispersal	
agents

Generate	n‐agents,	all	on	grid	cells	that	are	passable n‐agents

Set	gut	retention	time	(GRT)	(hr)	and	distribution GRT	(hr)

Set	movement	model.	See	submodel	section	for	further	information	on	each	of	
the	models.

 

Model	run

Move	dispersal	
agents

Follow	rules	as	described	in	Supporting	Information,	with	agent	moving	along	
turning	angle	ϕ and	along	step	length	(SL)	as	defined	by	the	movement	model	and	
avoiding	barriers	as	appropriate

detection‐dist, β0,	SL,	ϕ,	real	x,	real	y

Calculate	real	x‐ and y‐coordinates	of	the	dispersal	agent	from	the	point	of	origin	
(i.e.	true	distance	moved	accounting	for	toroidal	wrap)

 

Consume	seed If	agent	is	on	a	plant	habitat	cell,	consume	Poisson(0.5	×	λseeds)  

Record	the	coordinates	of	the	plant	habitat	cell	that	seeds	are	consumed	from  

Deposit	seeds Deposit	scats	containing	n‐seeds‐consumed	according	to	distribution	of	mean	gut	
retention	time	(hr).

Mean	and	var	GRT,	GRT	
distribution
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dispersal	 processes	 over	 broader	 spatial	 and	 temporal	 extents.	
During	a	given	 time‐step,	 there	 is	 a	 chance	 (plazy)	 that	 the	agent	
does	not	leave	the	grid	cell.	Otherwise,	during	each	time‐step,	the	
agent	moves	according	to	step	length	and	turning	angle	parame-
ters	(Table	2).

At	 each	 movement	 step,	 a	 new	 target	 location	 (grid	 cell)	 is	
selected	 and	 the	 agent	 moves	 in	 a	 straight	 line	 towards	 it.	 The	
movement	model	 (i.e.	distance	 travelled	and	 turning	angle	 in	each	
time‐step)	was	parameterized	using	the	emu	biotelemetry	data	(the	
‘emu	movement	model’;	Figure	1).	The	movement	of	agents	is	not	af-
fected	by	fruit	abundance	(i.e.	they	do	not	directly	track	resources).	
Where	 impassable	 habitat	 is	 present	 in	 the	 landscape,	 the	 proba-
bility	 of	 an	 agent	detecting	 and	 reacting	 to	 a	 patch	of	 impassable	
habitat	(pa)	is:

where	β0	=	the	steepness	of	the	distance	response	to	impassable	hab-
itat	(default	of	0.01),	dmax	is	the	maximum	distance	at	which	an	agent	
can	detect	impassable	habitat	and	d	=	distance	to	nearest	impassable	
habitat.

Based	on	a	test	against	a	random	uniform	deviate,	if	impassable	
habitat	is	detected	the	agent	stops	(the	time‐step	ends)	and	selects	
a	new	target	patch;	pa	=	1.0	if	the	agent	is	immediately	adjacent	to	a	
grid	cell	containing	impassable	habitat.	We	conducted	a	sensitivity	
analysis	of	the	effects	of	β0 and dmax	on	the	emergent	seed	dispersal	
kernel	 (Figures	 S8–S10).	 If	 after	moving	 the	 disperser	 agent	 is	 lo-
cated	in	a	plant	patch,	it	feeds	on	seeds	in	that	patch,	which	are	then	
excreted	after	a	retention	time	drawn	from	either	an	Exponential	or	
Gamma	probability	distribution	for	each	feeding	bout,	with	M	=	5	hr	
and	(for	the	Gamma)	variance	=	0.4	hr	(see	Supporting	Information:	
Appendix	S1).	We	assume	that:	(a)	after	consumption	seeds	will	not	
be	 defecated	 until	 at	 least	 the	 next	 time‐step	 (depending	 on	 the	
movement	model	used,	this	may	mean	that	the	dispersal	agent	is	in	
the	same	grid	cell)	and	(b)	frugivory	is	not	intense	enough	to	remove	
all	fruit	from	a	grid	cell.

2.4 | Movement models

Besides	the	emu	movement	model,	we	evaluated	three	well‐estab-
lished	random	walk	models	(Figure	1;	Benhamou,	2014;	O’Sullivan	
&	Perry,	2013)	–	a	correlated	random	walk	(diffusive),	biased	cor-
related	random	walk	(advecto‐diffusive)	and	Lévy	walk	(super‐dif-
fusive).	In	a	correlated	random	walk,	individuals	move	through	the	
landscape	with	a	fixed	step	length	and	with	turning	angles	sequen-
tially	correlated	(in	this	case	by	drawing	headings	from	a	Gaussian	

(1)pa=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.0, d≥dmax

1.0, d≤1.0

a ⋅exp(−�0×d) , otherwise

,

TA B L E  2  Model	parameters	for	each	animal	movement	model	for	the	initial	(baseline)	model;	numbers	in	square	brackets	represent	the	
ranges	over	which	uncertainty	analyses	were	conducted

Parameters
Correlated random walk 
(CRW) Biased CRW Lévy walk (LW) Emu (EMM)

General

Simulation	length	(hr)/n	steps	in	
model

1,000 1,000 1,000 1,000

n‐agents 1 1 1 1

Habitat	cells

n‐plant‐grid cells 25% 25% 25% 25%

Dispersal	agents

Step	length	(SL) 3 3 Cauchy	(0,1)a 3.36b

Turning	angle	φ SD 180c SD 180 Uniform Uniform

Bias – 0.25 – –

Gut	retention	time	(hr)d 5 5 [2–10] 5 5

Detection‐dist 10 [5–15] 10 10 10

β0 0.01 [0.005–0.0015] 0.01 0.01 0.01

plazy 0.0 [0.0–0.1] 0.0 0.0 0.0

Abbreviation:	EMM,	emu	movement	model.
aSL	(in	habitat	cells)	for	the	LW	is	drawn	from	a	random	Cauchy	distribution	with	location	and	scale	parameters	of	0	and	1	respectively.	
bSL	(in	habitat	cells	of	50	m)	for	the	emu	model	is	drawn	from	a	log‐normal	distribution	with	mean	4.76	and	SD	1.46	(based	on	model	fit	to	the	hourly	
emu	step	length	data).	
cCRW	has	a	standard	deviation	of	the	turning	angle	of	180	degrees.	
dGut	retention	time	is	drawn	from	either	a	random	Exponential	distribution	with	mean	1/rate	(5	hr)	or	a	random	Gamma	distribution	with	mean	5	hr	
and	variance	0.4	hr	(means	and	variances	from	Herd	&	Dawson,	1984).	
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distribution	 centred	 on	 the	 current	 heading	 with	 the	 standard	
deviation	controlling	the	strength	of	the	autocorrelation).	In	a	bi-
ased	correlated	random	walk,	the	step	length	is	fixed	but	the	turn-
ing	angle	is	a	weighted	average	of	a	new	random	heading	(as	per	
the	 correlated	 random	walk)	 and	 a	 fixed	 directional	 bias	 (as	 the	
weighting	towards	the	bias	increases	movement	is	more	strongly	
oriented	in	that	direction).	In	the	Lévy	walk,	turning	angles	are	ran-
domly	selected	but	step	length	at	each	time	interval	is	drawn	from	
a	Cauchy	distribution	with	location	=	0.0	and	scale	=	1.0;	sample	
movement	 paths	 across	 the	 model	 environment	 can	 be	 seen	 in	
Figure	1.

2.5 | Model analysis

We	used	the	median	and	99th	percentile	of	seed	dispersal	distance	
as	measures	of	typical	and	long‐distance	dispersal	(Nathan	et	al.,	
2003).	We	described	the	seed	dispersal	kernel	with	 the	a	 (scale)	
and b	(shape)	parameters	of	the	log‐secant	distribution,	which	was	
identified	by	Bullock	et	al.	(2017)	as	among	the	best	empirical	de-
scriptors	of	seed	dispersal	kernels	 (see	also	Nathan	et	al.,	2012).	
We	computed	the	area	over	which	the	agent	deposited	seeds	(the	
convex	hull	formed	by	the	bounding	box	of	locations	visited)	and	
the	median	nearest	neighbour	(NN)	distance	between	seed	(scat)	

depositions	 using	 the	 r	 package	 spatstat	 v	 1.56–0	 (Baddeley	 &	
Turner,	2005).

In	evaluating	the	sensitivity	of	the	model	to	changes	in	its	pa-
rameterization,	we	 focussed	 our	 analyses	 on	 the	 effects	 on	 the	
seed	dispersal	kernel	of:	(a)	changes	in	the	mean	gut	passage	time	
and	 the	 probability	 distribution	 used	 for	 the	 gut	 passage	 time	
and	 (b)	 habitat	 loss	 and	 fragmentation	 in	 the	 landscape.	 Finally,	
for	the	emu	movement	model,	we	conducted	a	multidimensional	
uncertainty	analysis	using	a	Latin	hypercube	(Stein,	1987)	across	
2	×	104	combinations	of	nine	parameters	 in	 landscapes	with	and	
without	 habitat	 loss.	We	 then	 built	 1	 ×	 103	 boosted	 regression	
trees	(BRTs;	see	Elith,	Leathwick,	&	Hastie,	2008)	for	subsamples	
of	n	=	1	×	103	from	these	2	×	104	parameter	combinations	and	es-
timated	the	mean	and	variability	in	the	importance	of	each	model	
parameter;	we	also	derived	partial	dependence	curves	 (effect	of	
individual	parameters	on	predicted	values	while	holding	all	others	
constant)	 for	each	predictor.	We	trained	BRTs	to	predict	median	
and	99th	percentile	seed	dispersal	distances,	the	a and b	parame-
ters	of	the	log‐secant	distribution,	the	NN	deposition	distance	and	
the	area	the	agent	moved	through	during	the	1,000	hr	simulation.	
The	BRTs	were	implemented	in	the	r library gbm3	v	2.2	(Hickey	et	
al.,	 2016)	 and	 the	 Latin	 hypercube	using	 the	 r library Lhs v 0.16 
(Carnell,	2018).

F I G U R E  1  Example	trajectories	for	
the	four	types	of	movement	models	
that	we	evaluated.	The	dashed	grey	line	
represents	the	simulated	area;	if	an	agent	
moves	beyond	the	arena,	although	they	
will	re‐appear	on	the	‘other	side’	of	the	
grid	under	toroidal	wrapping	(Figure	S1),	
we	track	their	true	spatial	location.	The	
walks	are	coloured	from	start	(light)	to	
finish	(dark),	red	dots	are	seed	depositions	
and	the	grey	shaded	area	the	convex	hull	
containing	the	sites	visited	by	the	agent.	
Note	the	axes	vary	in	their	scaling	across	
the	four	plots.	Emu	silhouette:	Darren	
Naish	(http://www.phylo	pic.org)
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3  | RESULTS

3.1 | Emu trajectory analysis

The	median	and	maximum	step	length	 in	the	hourly	 interval	bio-
telemetry	data	were	150	and	2,172	m,	respectively,	and	the	turn-
ing	angles	for	the	hourly‐interval	data	revealed	some	persistence	
around	zero	radians	(Figure	S4).	There	were	few	significant	auto-
correlations	 in	turning	angle	and	step	 length	(up	to	a	 lag	of	6	hr)	
and	 there	was	 no	 significant	 autocorrelation	 in	 the	missing	 val-
ues.	We	used	this	information	to	parameterize	the	emu	movement	
model.

3.2 | Baseline emu movement model dynamics and 
effects of gut retention time on dispersal kernels 
generated by the emu

In	 a	 landscape	with	no	habitat	 loss	 under	baseline	 conditions	 and	
a	Gamma	gut	retention	time	distribution	(Table	2),	the	median	and	
99th	percentile	(a	measure	of	long‐distance	dispersal)	dispersal	dis-
tances	 for	 the	 emu	movement	 model	 were	 505–575	m	 (50–99th	
percentile)	and	1,266–1,475	m	respectively	(Figure	2).	The	maximum	
seed	dispersal	distance	across	all	realizations	exceeded	2,500	m.	The	
median	NN	distance	between	scat	depositions	was	139–158	m.

Both	 mean	 gut	 retention	 time	 and	 the	 probability	 distribu-
tion	 used	 to	 describe	 gut	 retention	 time	 affected	 the	 distance	

over	 which	 seeds	 are	 dispersed	 (Figure	 2).	Median	 seed	 disper-
sal	distances	increased	with	mean	gut	retention	time	and	for	the	
same	mean	gut	retention	time	were	higher	under	a	Gamma	than	
an	 Exponential	 distribution,	 but	 the	 99th	 percentile	 dispersal	
distances	were	higher	 for	 the	Exponential.	These	parameters	af-
fected	neither	the	area	over	which	seeds	were	deposited	nor	the	
median	distance	between	NN	depositions	(Figure	S13).

3.3 | BRT analysis of emu seed dispersal in an 
unfragmented landscape

Resampled	BRT	analysis	showed	that	the	median	and	99th	percen-
tile	dispersal	distance	and	the	a and b	parameters	of	the	log‐secant	
distribution	 are	 controlled	 by	 the	mean	 gut	 passage	 time	 and	 the	
probability	distribution	used	for	the	gut	passage	time.	The	median	
NN	scat	distance	is	controlled	by	the	probability	that	an	agent	leaves	
a	cell	during	a	given	time‐step	(plazy)	and	the	gut	retention	time	distri-
bution.	BRTs	for	the	hull	area	did	not	have	strong	predictive	perfor-
mance,	but	identified	plazy	as	important	(Figures	S14	and	S15).

3.4 | Effects of habitat loss and fragmentation 
on seed dispersal kernels emerging from the emu 
movement model

Habitat	 loss	 strongly	 influenced	 agent	 movement	 and	 hence	 seed	
dispersal;	even	a	small	amount	of	habitat	loss	reduced	seed	dispersal	

F I G U R E  2  Median	and	99th	percentile	
of	seed	dispersal	distance	(a	and	b,	
respectively),	hull	area	and	median	nearest	
neighbour	distance	between	scats	(c	and	
d,	respectively)	for	the	emu	movement	
model,	in	a	homogeneous	landscape.	
Using	a	Gamma	distribution	to	describe	
gut	retention	time	produces	longer	
median	seed	dispersal	distances	than	the	
Exponential
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distances,	distance	between	seed	depositions	and	the	area	over	which	
seeds	were	deposited	(Figure	3).	For	the	same	amount	of	habitat	loss,	
where	fragmentation	was	constrained	to	just	a	few	large	areas	the	ef-
fect	on	the	dispersal	kernel	was	much	less	than	where	the	landscape	
consisted	of	many,	small	patches	of	impassable	habitat	(Figure	3).	The	
scale	(a)	and	shape	(b)	parameters	of	the	log‐secant	emu	seed	dispersal	
kernels	declined	with	landscape	fragmentation,	reflecting	a	decrease	
in	the	potential	for,	and	extent	of,	long‐distance	dispersal	(Figure	4).

3.5 | BRT analysis of emu movement under habitat 
loss and fragmentation

In	 landscapes	 with	 habitat	 loss	 and	 fragmentation,	 these	 are	 the	
dominant	controls	of	agent	movement	and	seed	deposition.	The	only	
state	 variable	 for	which	 a	 combination	of	 habitat	 loss	 and	habitat	
fragmentation	were	not	the	most	important	predictors	(habitat	loss	
median	relative	importance:	61.1%)	was	the	b	parameter	of	the	log‐
secant	distribution,	which	was	controlled	by	 the	gut	passage	 time	
distribution	used,	and	then	the	amount	of	habitat	 loss.	 In	short,	 in	
unfragmented	landscapes,	model	parameters	related	to	gut	passage	
time	were	the	most	important	determinants	of	the	dispersal	kernel,	

but	under	habitat	loss	and	fragmentation,	landscape	structure	was	
most	important	(Figures	S20	and	S21).

3.6 | Effects of gut retention time and habitat 
loss and fragmentation on seed dispersal kernels for 
generic random walk movement models

In	landscapes	without	habitat	loss,	for	the	three	generic	movement	
models	 (correlated	 random	 walk,	 biased	 correlated	 random	 walk	
and	Lévy	walk),	median	seed	dispersal	distances	were	higher	for	the	
Gamma	than	the	Exponential	distribution,	but	the	99th	percentile	
distance	was	lower	(Figure	5).	As	habitat	loss	and	fragmentation	in-
creased,	median	and	99th	percentile	dispersal	distances	decreased	
for	 all	 the	 generic	movement	models	 (Figures	 S16	 and	 S17).	 The	
99th	percentile	dispersal	distance	in	the	Lévy	walk	declined	more	
than	in	the	correlated	random	walk	under	habitat	loss,	especially	as	
fragmentation	increased.	Compared	to	the	emu	movement	model,	
the	Lévy	walk	produced	dispersal	kernels	with	shorter	median	dis-
persal	 distances	 (log‐secant	 parameter	a)	 but	 longer	 tailed	 distri-
butions	 (log‐secant	parameter	b;	Figure	S12).	The	decrease	 in	 the	
mean	NN	distance	between	scats	and	the	area	seeds	was	deposited	

F I G U R E  3  Effects	of	habitat	loss	and	fragmentation	on	seed	dispersal	kernels	under	the	emu	movement	model,	with	low	and	high	
fragmentation	levels	(attract‐impassable	=	0.9	[low	fragmentation]	and	0.5	[high	fragmentation]	respectively)
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over	 as	 habitat	 loss	 and	 fragmentation	 increased	 was	 most	 pro-
nounced	in	the	emu	movement	model	(Figures	S16	and	S17).

The	seed	dispersal	kernel’s	shape	(a)	and	scale	(b)	parameters	re-
duced	with	habitat	loss,	and	more	so	as	landscape	fragmentation	in-
creased	(Figures	6	and	S16–S19).	For	the	two	correlated	random	walks,	
the	strongest	effect	of	habitat	loss	and	fragmentation	was	on	a	(scale),	
whereas	for	the	Lévy	walk,	it	affected	a and b.	The	effect	of	the	spatial	
configuration	of	habitat	loss	increased	with	the	amount	of	habitat	loss.

4  | DISCUSSION

Our	analyses	confirm	that	the	spatial	patterns	of	seed	dispersal	emerg-
ing	 from	 animal	 movement	 are	 influenced	 by	 landscape	 structure	
(composition	and	configuration)	and	biological	traits	(animal	movement	
and	seed	retention);	other	studies	have	found	the	same	complex	suite	
of	interactions	influence	seed	dispersal	(Pegman	et	al.,	2017;	Uriarte	et	
al.,	2011).	However,	unlike	some	other	generic	simulation	models	(e.g.	
Jones	et	al.,	2017),	we	found	for	the	emu	movement	model	that	habitat	
loss	and	fragmentation	consistently	reduced	median	and	99th	percen-
tile	seed	dispersal	distances.	The	outcomes	of	our	model‐based	experi-
ments	clearly	highlight	the	importance	of	decisions	about	how	animal	
movement	is	represented	in	simulations	of	seed	dispersal	dynamics.

4.1 | Effects of the extent and spatial pattern of habitat 
loss and fragmentation on the seed dispersal kernels and 
seed rain shadows emerging from animal movement

As	a	critical	determinant	of	the	ability	of	animals	to	move	between	
habitat	patches	(Atkins,	Perry,	&	Dennis,	2019),	landscape	structure	

has	a	considerable	impact	on	patterns	of	seed	dispersal,	both	in	itself	
and	by	influencing	animal	movement	(Damschen	et	al.,	2014;	Lenz	et	
al.,	2011;	Levey,	Bolker,	Tewksbury,	Sargent,	&	Haddad,	2005;	Levey	
et	al.,	2008).	In	an	analysis	of	57	species,	Tucker	et	al.	(2018)	report	
that	movement	is	reduced	by	an	average	of	one‐third	in	landscapes	
where	human	activity	is	high.	In	each	of	the	four	movement	models	
we	evaluated,	 increased	habitat	 loss	 and	 landscape	 fragmentation	
interacted	 to	decrease	key	 seed	dispersal	 parameters.	This	 reduc-
tion	in	seed	dispersal	is	a	result	of	agents	adhering	to	habitat	edges	
(and	their	vicinity)	so	that	in	fragmented	landscapes,	movement	be-
tween	disconnected	parts	of	the	landscape	is	impeded	(similar	to	the	
'entrapment'	dynamic	described	by	Jones	et	al.,	2017).

The	 landscape	changes	 that	we	simulated	 represent	a	worst‐
case	scenario,	where	habitat	 loss	results	 in	entirely	 impermeable	
habitat	edges	between	areas	of	passable	landscape.	Frugivore	mo-
bility	 is	a	key	determinant	of	 the	rate	of	seed	dispersal	between	
fragments.	 Critically,	 as	 habitat	 becomes	 increasingly	 discon-
nected,	the	ratio	of	edges	to	continuous/natural	habitat	increases,	
with	a	significant	effect	on	frugivore	behaviour	(Restrepo,	Gomez,	
&	Heredia,	1999).	Beyer	et	al.	(2016)	demonstrated	that	anthropo-
genic	 linear	features	can	substantially	 impede	animal	movement.	
However,	the	response	of	frugivores	to	habitat	edges	is	likely	to	be	
species	specific	and	context	dependent.	While	Levey	et	al.	(2005)	
show	how	local	edge	observations	can	inform	broader,	landscape	
models	of	habitat	use	and	seed	dispersal,	there	is	still	much	work	
to	be	done	in	examining	frugivores’	edge	responses.	Our	analyses	
highlight	how	critical	understanding	frugivore	response	to	changes	
in	habitat	structure	is	for	reasonable	seed	dispersal	kernel	estima-
tion	(see	also	Côrtes	&	Uriarte,	2013).	For	example,	if	we	increase	

F I G U R E  4  Effects	of	increasing	habitat	
loss	and	fragmentation	on	estimates	of	
a and b	for	the	log‐secant	distribution	
describing	the	seed	dispersal	kernel	
under	the	emu	movement	model.	As	
fragmentation	increases	the	effects	of	
habitat	loss	become	more	pronounced
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the	capacity	for	an	organism	to	escape	impassable	habitat	edges,	
then	 the	median	 and	 long‐distance	 seed	 dispersal	 estimates	 in-
crease	 and	 the	 mean	 NN	 distances	 between	 seed	 deposition	
events	drop	commensurately.	These	results	suggest	that	the	pro-
vision	of	linking	corridors	to	facilitate	animal	movement	could	help	
to	maintain	ecosystem	services	such	as	seed	dispersal,	and	models	
such	as	that	developed	here	could	inform	optimal	provisioning	of	
such	habitat	features.

4.2 | Potential effects of habitat loss and 
fragmentation on seed dispersal by emu

The	pioneering	banding	and	recapture	of	emus	by	Davies,	Beck,	and	
Kruiskamp	(1971)	revealed	a	remarkable	capacity	for	these	birds	to	
travel	long	distances	over	relatively	short	periods,	and	has	resulted	
in	 focus	 on	 the	 emu	 as	 a	 long‐distance	 dispersal	 vector	 (Calviño‐
Cancela,	He,	&	Lamont,	2008;	Calviño‐Cancela	et	al.,	2006;	Dunstan	
et	al.,	2013;	McGrath	&	Bass,	1999).	Our	median	and	99th	percen-
tile	dispersal	distance	estimates	of	505	and	1,266	m	highlight	 the	
important	 contribution	 that	 this	 ratite	plays	 in	 seed	dispersal	 and	
plant	dynamics.	These	values	are	even	more	remarkable	considering	
they	are,	 in	part,	derived	from	a	rather	conservative	gut	retention	

time	(5	hr;	Herd	&	Dawson,	1984).	With	some	material	reported	to	
be	retained	in	the	gut	for	many	weeks	(Willson,	1989),	and	with	the	
seeds	of	many	Australian	species	possessing	hard	endocarps,	likely	
resistant	to	prolonged	retention,	emus	are	likely	responsible	for	ex-
tremely	long‐distance	dispersal	of	seeds.	The	dispersal	distances	we	
report	are	similar	to	those	of	Westcott,	Setter,	Bradford,	McKeown,	
and	Setter	(2007)	for	the	southern	Cassowary	(C.  casuarius),	a	large	
ratite	 found	 in	 tropical	northern	Australia,	who	estimated	median	
and	maximum	dispersal	distances	of	387	and	5,212	m,	respectively,	
for	 cassowary‐dispersed	 seed	 of	 the	 invasive,	 tropical	 rainforest	
plant	Annona glabra	 (Annonaceae).	Our	 simulations	 demonstrated	
that	the	response	of	the	emu	to	habitat	edges	substantially	reduced	
median	 and	 99th	 percentile	 dispersal	 distances.	 Overall,	 the	 re-
sponse	 of	 the	 emu	movement	model	 to	 changes	 in	 habitat	 struc-
ture	was	similar	to	the	Lévy	walk,	with	commensurate	decreases	in	
median	 and	 long‐distance	 dispersal	 estimates	 from	unfragmented	
landscapes	 to	 those	 containing	 increasing	 amounts	 of	 impassable	
habitat.	It	is	perhaps	unsurprising	that	the	Lévy	and	emu	movement	
models	 responded	 similar	 to	 increasing	 habitat	 fragmentation	 as	
both	possess	heavy‐tailed	step	length	distributions	(a	power	law	for	
the	Lévy	walk	and	a	log‐normal	distribution	for	the	emu	movement	
model).

F I G U R E  5  Seed	dispersal	kernel	parameters	for	the	four	movement	models,	evaluated	in	a	homogeneous	landscape.	Using	a	Gamma	
distribution	for	GRT	increases	median	seed	dispersal	distances	relative	to	the	Exponential.	Abbreviations:	BCRW,	biased	correlated	random	
walk;	CRW,	correlated	random	walk;	EMM,	emu	movement	model;	GRT,	gut	retention	time;	LW,	Lévy	walk
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The	complex	movement	decisions	undertaken	by	frugivores,	
as	 encapsulated	 in	 the	movement	 ecology	 framework	 (Nathan,	
Getz,	et	al.,	2008),	pose	challenges	for	the	adequate	representa-
tion	of	 frugivore	behaviour	and	associated	ecological	 functions	
in	 simulation	models.	Most	 agent‐based	 approaches	 to	model-
ling	 seed	 dispersal	 by	 frugivores	 use	 either:	 (a)	 a	 single	model	
of	animal	movement	 in	a	single	or	 limited	 landscape	context	or	
(b)	 behavioural	 information	 to	 construct	 dispersal	models	 from	
animal	movement.	In	the	latter	case,	a	typical	approach	is	to	clas-
sify	 discrete	 behaviours	 (i.e.	 sleeping/foraging/travelling),	with	
the	 resulting	 movement	 pattern	 emerging	 as	 a	 hybrid	 of	 ran-
dom	and	correlated	random	walks	(Bialozyt	et	al.,	2014;	Zhang,	
Dennis,	Landers,	Bell,	&	Perry,	2017).	The	composite	movement	
approach	 is	 supported	 by	 fine‐grained	 observations	 of	 captive	

frugivores	(specifically	primates),	with	movement	patterns	shift-
ing	 from	Brownian	 to	Lévy	walks	depending	on	behaviour;	 this	
conceptualization	reflects	the	state–space	approach	to	analysing	
movement	data	(Sueur,	Briard,	&	Petit,	2011).	It	is,	however,	un-
certain	how	these	observations	apply	at	the	landscape	level	and	
our	 results	highlight	 the	 caution	 required	 in	 selecting	between	
generic	 models	 of	 movement	 to	 describe	 frugivore	 behaviour.	
In	 the	 ecosystems	we	 consider,	 other	 (now	extinct)	megafauna	
(e.g.	 the	 giant	 flightless	 birds	 in	 Genyornis)	 may	 once	 have	
been	 important	 seed	 dispersers	 (Murray	 &	 Rich,	 2004).	 Pires,	
Guimarães,	Galetti,	and	Jordano	(2018)	reconstructed	seed	dis-
persal	 by	 South	American	megafauna	drawing	on	 random	walk	
models;	 allometric	 random	walk	 theory	 (Hirt	 et	 al.,	 2018)	 also	
offers	a	potential	route	to	reconstructing	dispersal	for	extinct	or	

F I G U R E  6  Effects	of	increasing	habitat	loss	(grid	rows)	and	fragmentation	(colours)	on	estimates	of	a and b	for	the	log‐secant	distribution	
describing	the	seed	dispersal	kernel	for	each	of	the	four	movement	models.	As	fragmentation	increases	the	effects	of	habitat	loss	become	
more	pronounced.	Abbreviations:	BCRW,	biased	correlated	random	walk;	CRW,	correlated	random	walk;	EMM,	emu	movement	model;	LW,	
Lévy	walk
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data‐depauperate	 species.	 However,	 our	 analyses	 suggest	 that	
using	 simulation	 approaches	 to	 reconstruct	 the	 seed	 dispersal	
of	extinct	animals	requires	careful	consideration	of	appropriate	
movement	models.

The	 inferences	we	make	 from	our	 simulations	arise	 from	our	
representation	of	movement	dynamics,	a	key	component	of	which	
is	the	disperser’s	response	to	habitat	edges.	The	sensitivity	of	our	
model	to	the	representation	of	how	agents	perceive	and	respond	
to	the	habitat	edge	highlights	the	need	for	robust	data	describing	
these	behaviours	(Fortin	et	al.,	2013;	Nams,	2014).	The	GPS	bio-
telemetry	data	used	to	develop	our	emu	movement	model	are	at	a	
spatial	grain	that	precludes	detailed	analysis	of	edge	response	and	
so	we	used	a	phenomenological,	but	biologically	informed,	repre-
sentation	 of	 this	 effect.	Understanding	 the	 general	 and	 specific	
responses	of	seed	dispersers	to	habitat	edges	requires	further	re-
search	(Beyer	et	al.,	2016;	Jakes,	Jones,	Paige,	Seidler,	&	Huijser,	
2018).	Our	model	does	not	represent	the	spatial	memory	of	fru-
givores	 (Fagan	 et	 al.,	 2013),	 which	 mediates	 foraging	 strategies	
and	detection,	and	potentially	reaction	to	habitat	edges.	Frugivore	
spatial	memory	is	likely	a	key	component	in	better	understanding	
emergent	 patterns	 of	 seed	 dispersal,	 but	 is	 extremely	 challeng-
ing	 to	 quantify	 (Bracis	 &	 Mueller,	 2017;	 John,	 Soldati,	 Burman,	
Wilkinson,	&	Pike,	2016).

4.3 | Model capabilities and limitations

A	limitation	of	our	agent‐based	representation	of	seed	dispersal	 is	
that	it	estimates	dispersal	parameters	in	a	static	environment.	While	
typical	patterns	of	animal	movement	are	emergent	properties	of	the	
landscape,	the	structure	of	the	landscape	is	itself	an	emergent	prop-
erty	of	animal	movement.	Although	over	 the	temporal	extents	we	
considered	 the	 landscape	 is	 effectively	 static,	 future	work	 should	
identify	 landscape‐dispersal	 feedback	mechanisms.	 In	 the	 context	
of	emu	dispersal,	for	example,	emus	defecate	seeds	in	dense	aggre-
gations	 that	may	 undergo	 density‐dependent	 thinning,	 which	 can	
reduce	 the	per	 capita	probability	of	 a	 seed	 to	 survive	and	mature	
to	reproduction	(Spiegel	&	Nathan,	2010,	2012).	Over	longer	dura-
tions,	these	types	of	dynamics	will	affect	long‐term	patterns	of	plant	
recruitment	and	survival.

The	 effects	 of	 shifts	 in	 frugivore	 activity	 and	 density	 on	 seed	
dispersal	and	demography	of	 long‐lived	plant	species	may	be	diffi-
cult	to	observe	or	predict	(Nield,	Enright,	Ladd,	&	Perry,	2019).	Our	
model	simulations	were	limited	to	a	single	fruiting	season	for	a	ge-
neric	plant	species,	so	we	did	not	consider	the	 long‐term	resource	
(seed)	depletion	that	may	occur	during	extended	periods	of	localized	
foraging	in	extremely	fragmented	landscapes	or	where	desirable	re-
sources	are	extremely	 localized	 (Smith	&	McWilliams,	2014).	Over	
long	 periods	 of	 time,	 local	 fruit	 production	may	 decrease	 in	 small	
habitat	 remnants	 (Cunningham,	 2000),	 thus	 ultimately	 decreasing	
fruit	availability	and	the	potential	 for	 long‐distance	seed	dispersal.	
However,	for	masting	species	representing	a	single	fruiting	episode	
may	be	adequate	as	the	intense	fruit	production	will	attract	frugiv-
ores	and	lead	to	extensive	dispersal	as	they	become	attuned	to	the	

masting	 species	 and	 seek	 locations	 of	 fruiting	 plants.	An	 example	
is Podocarpus drounyianus	 that	produces	seed	after	 fire	and	 is	dis-
persed	by	emus	(Chalwell	&	Ladd,	2005).

5  | CONCLUSIONS

Large	frugivores	play	essential	ecological	roles	in	many	ecosystems.	
If	 plant	 species	dependent	on	 frugivores	 for	 seed	dispersal	 are	 to	
shift	their	ranges	in	response	to	environmental	change,	it	is	neces-
sary	to	understand	how	habitat	loss	and	fragmentation	affect	animal	
movement.	With	habitat	loss	and	fragmentation	continuing	globally,	
simulation	models	provide	an	opportunity	to	explore	the	feedbacks	
between	 the	 landscape,	 frugivore	 behaviour	 and	 seed	 dispersal	
outcomes.	Future	modelling	efforts	should	focus	on	exploring	how	
these	persistent	landscape	changes	alter	keystone	disperser	species	
behaviour,	 seed	 dispersal	 dynamics	 and,	 in	 turn,	 future	 landscape	
construction.
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